• Title/Summary/Keyword: 회전중인 블레이드

Search Result 46, Processing Time 0.025 seconds

Development of a Simulator for 750 kW Gearless Wind Turbine (750kW gearless형 풍력발전 시스템용 모의시험 장치의 개발)

  • Kwon S. J.;Son Y. G.;Seo J. H.;Lee W. W.;Jang S. D.;Oh J. S.;Hwang J. S.;Park G. W.;Kwon O. J.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1190-1192
    • /
    • 2004
  • 풍력을 이용한 풍력발전기의 전력변환 시스템을 개발하기 위해서는 바람특성을 정확히 분석하고 이를 대치할 수 있는 모의시험 장치가 필수적이다. 모의시험 장치는 풍향, 풍속 등의 인자들을 입력받아 회전 블레이드의 토오크를 전동기가 대신해서 발전기에 공급하게 된다. 본 논문에서는 풍력발전 모의시험 장치를 이용해서 현재 개발 중인 750kW gearless형 풍력발전 시스템의 인버터 특성과 고효율의 전력변환 설계를 위해 시험용 지그에서 시험한 결과를 보이고자 한다.

  • PDF

Turbine Efficiency Analysis of Steady Flow in a Twin Scroll Turbocharger (트윈 스크롤 터보과급기에서 정상유동의 터빈 효율 분석)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.765-770
    • /
    • 2020
  • The turbochargers used widely in diesel and gasoline engines are effective devices to reduce fuel consumption and emissions. In this study, the isentropic turbine efficiency of the steady flow in a twin-scroll turbocharger for the passenger vehicle gasoline engine was analyzed. The cold gas test bench was designed and made. The pressure and temperature of the inlet and exit of the turbine were measured at 60,000, 70,000, 90,000, and 100,000rpm under the steady-state flow. The isentropic turbine efficiency was calculated. The efficiency was the range of 0.53 to 0.57. The BSR and expansion ratio were changed from 0.71 to 0.84 and from 1.24 to 1.72, respectively. The isentropic turbine efficiency decreased with increasing BSR and expansion ratio. The operation of only scroll A or B was compared with that of the twin-scroll turbine. The isentropic efficiency of using only scroll B was higher than those of only scroll A at 60,000rpm. The isentropic efficiency of using only scroll A was higher than those of only scroll B at 100,000rpm. Therefore, the twin-scroll turbine used in this study is operating effectively in the wide speed range.

Aerodynamic Load Analysis of a Floating Offshore Wind Turbine Considering Platform Periodic Motion (플랫폼의 주기 운동을 고려한 부유식 해상 풍력터빈의 공력 성능 해석)

  • Kim, Youngjin;Yu, Dong Ok;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.368-375
    • /
    • 2018
  • In the present study, aerodynamic load analysis for a floating off-shore wind turbine was conducted to examine the effect of periodic platform motion in the direction of 6-DOF on rotor aerodynamic performance. Blade-element momentum method(BEM) was used for a numerical simulation, the unsteady airload effects due to the flow separation and the shed wake were considered by adopting a dynamic stall model based on the indicial response method. Rotor induced downwash was estimated using the momentum theory, coupled with empirical corrections for the turbulent wake states. The periodic platform motions including the translational motion in the heave, sway and surge directions and the rotational motion in the roll, pitch and yaw directions were considered, and each platform motion was applied as a sinusoidal function. For the numerical simulation, NREL 5MW reference wind turbine was used as the target wind turbine. The results showed that among the translation modes, the surge motion has the largest influence on changing the rotor airloads, while the effect of pitch motion is predominant for the rotations.

A Study on the Structural Stability and Effectiveness of Rope Cutter for Ship's Propeller (선박추진기용 로프절단장치의 구조 안정성 및 효용성에 관한 연구)

  • Kim, Jun-Soo;Seul, Youngyoon;Lee, Du-Yong;Park, Kitae;Kim, Tae Hun;Choi, Jae-Hyuk;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.550-556
    • /
    • 2021
  • The scissor-type rope cutter is the most widely used amongst all kinds of commercially available rope cutters in Korea. In this study, we performed finite element analysis on the scissor-type rope cutter. We determined the structure of the cutter that would ensure its stable operation in various situations involving rope entanglement, and verified its effectiveness by testing it in the lab and in an actual ship. These investigations revealed that when the propeller shaft was not rotated by rope entanglement, the constant torque generated by the engine resulted in the torsion of the rope cutter and maximum deformation in the lower blade, which was not restricted by finite element analysis. With increasing blade thickness, the maximum values of deformation and equivalent stress decreased, resulting in a rise in the safety factor. At the constant blade thickness, the effect of the torque variations on the maximum equivalent stress and the maximum deformation is independent of the position of the external force of the rope cutter and decreases in direct proportion. The results of this study confirmed that the rope-cutter structure determined by analysis could lead to a hassle-free removal of ropes and fishing nets under all conditions and environments.

LIDAR Analysis Program of Wind Resource Measurement KIER-$ShadeFree^{TM}$ (풍력자원조사 라이다 분석 프로그램 KIER-$LidarWind^{TM}$)

  • Kim, Hyun-Goo;Jeong, Tae-Yoon;Jang, Moon-Seok;Jeon, Wan-Ho;Yoon, Seong-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.190.2-190.2
    • /
    • 2010
  • LIDAR는 레이저를 대기에 송출하여 미세먼지의 이동에 의한 도플러 위상차를 검출함으로써 3차원 풍속벡터를 측정하는 원격탐사 장비로, 한국에너지기술연구원은 국내최초로 WindCube LIDAR를 도입하여 운영 중에 있다. LIDAR의 장점은 이동성, 설치의 편리성 외에도 현재까지 풍황탑이 모든 범위를 측정하지 못한 풍력발전기 블레이드 회전면 최고 높이인 지면 150m 까지의 풍속분포를 상세하게 측정할 수 있다는 특장점이 있다. WindCube LIDAR는 총 10개의 측정 고도를 설정할 수 있으며 1Hz로 원시자료를 획득하여 10분 평균자료로 저장한다. 이러한 측정자료를 통하여 기존 기상탑에서 불가능하였던 풍속분포의 정확한 이해와 난류특성의 파악이 가능하게 되었으나 반대급부로 급증한 측정자료의 정리와 분석에 많은 시간과 노력이 필요하게 되었다. 이에 한국에너지기술연구원에서는 LIDAR 측정자료의 가공 및 분석에 편리성을 제공하기 위해 KIER-$LidarWind^{TM}$ 프로그램을 개발하였으며, 2차원 등치선도 및 3차원 풍속분포 그래프를 시각함으로써 입체적인 가공 및 분석이 가능하도록 하였다.

  • PDF

Numerical Study on Three - Dimensional Viscous Flows in Turbine Blade Passages (터빈 블레이드 통로에서의 3차원 점성유동에 대한 수치해석)

  • 윤준원;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.527-539
    • /
    • 1992
  • 본 연구에서는 터빈익렬의 입구유동면에 주어지는 끝벽 경계층유동에 의하여 익렬 내의 유동에서 발생하는 여러 와류들에 의한 2차 유동과 이와 연관된 여러가지 3차원 점성유동 현상 그리고 이에 따른 유동손실을 보다 정확히 예측하기 위한 수치해 석적 연구를 수행하였으며, 이에 필요한 수치해석적 연구를 수행하였으며, 이에 필요 한 수치해석코드를 작성하였다.유동특성에 대하여 상세한 연구결과가 보고되어 있 는 UTRC(United Technologies Research Center) 평면 터빈익렬을 연구대상으로 채택하 여 익렬 내의 3차원 유동특성을 연구하고 계산한 결과를 기존의 결과와 비교 검토하였 다. 강한 2차유동이 존재하는 경우에 발생하는 수치확산을 감소시키기 위하여 대류 항에 대하여 2차 정확도(second-order accuracy)의 선형상류도식(linear upwind sche- me)을 사용하여 일반적으로 널리 사용되는 하이브리드도식(hybrid scheme)에 의한 해 석결과와 비교하였다. 터빈익렬 내의 난류 유동은 익렬의 회전과 유선의 만곡 등에 의한 영향으로 복잡한 유동현상을 나타내지만, 터빈익렬 내의 난류유동 특성에 대한 실험결과가 아직까지는 부족하고 또한 본 연구에서는 평균유동값의 정확한 해석에 중 점을 두었으므로 표준 k-.epsilon. 모델을 사용하였다.

Development of Ultrasonic Testing System for In-Service Inspection of the Shrunk-on Type LP Turbine Roter (Shrunk-on Type 저압 터빈 로터의 가동중검사를 위한 초음파검사 시스템 개발)

  • Park, Joon-Soo;Seong, Un-Hak;Ryu, Sung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Turbine, which is one of major components in nuclear power plants, requires reliable nondestructive inspections. But, accessibility of transducers is limited and interpretation of acquired signals is not easy at all due to the complication. So, in this study, we have fabricated mock-up specimens of real size and shape. we applied pulse-echo method and time-of-flight diffraction(TOFD) method for precise inspection of turbine key and wheel bore. And phased array ultrasonic testing method was adopted for wheel dovetail of turbines by using mock-up. Furthermore, an automatic scanner system was developed for in-service inspection of the developed methods.

Characteristics Analysis of a Pseudoelastic SMA Mesh Washer Gear for Jitter Attenuation of Stepper-actuated Gimbal-type Antennas (스텝모터 구동형 짐벌 안테나의 미소진동저감을 위한 초탄성 형상기억합금 메쉬 와셔 기어의 기본특성 분석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.46-58
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna is widely used to transmit bulk image data from high-resolution observation satellites. However, undesirable microvibrations induced by driving the antenna should be attenuated, because they are a main cause of image-quality degradation of the observation satellite. In this study, a pseudoelastic memory alloy (SMA) gear was proposed to attenuate the microvibrations by driving the antenna in an azimuth angle. In addition, the proposed gear can overcome the limitations of the conventional titanium blade gear, which is not still enough and is vulnerable to plastic deformations under excessive torque. To investigate the basic characteristics of the proposed SMA mesh washer gear, a static load test was performed on the thickness of the SMA mesh washer and the rotation of the gear. Moreover, The microvibration measurement test demonstrated that the SMA mesh washer gear proposed in this study is effective for microvibration attenuation.

Wind Estimation Power Control using Wind Turbine Power and Rotor speed (풍력터빈의 출력과 회전속도를 이용한 풍속예측 출력제어)

  • Ko, Seung-Youn;Kim, Ho-Chan;Huh, Jong-Chul;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.92-99
    • /
    • 2016
  • A wind turbine is controlled for the purpose of obtaining the maximum power below its rated wind speed. Among the methods of obtaining the maximum power, TSR (Tip Speed Ratio) optimal control and P&O (Perturbation and Observation) control are widely used. The P&O control algorithm using the turbine power and rotational speed is simple, but its slow response is a weak point. Whereas TSR control's response is fast, it requires the precise wind speed. A method of measuring or estimating the wind speed is used to obtain a precise value. However, estimation methods are mostly used, because it is difficult to avoid the blade interference when measuring the wind speed near the blades. Neural networks and various numerical methods have been applied for estimating the wind speed, because it involves an inverse problem. However, estimating the wind speed is still a difficult problem, even with these methods. In this paper, a new method is introduced to estimate the wind speed in the wind-power graph by using the turbine power and rotational speed. Matlab/Simulink is used to confirm that the proposed method can estimate the wind speed properly to obtain the maximum power.

Development of Drainage Pump for Rescue Sinking Ship (침수선박 구조를 위한 대용량 배수펌프 개발)

  • Kim, Kyeong-Soo;Jung, Kang-Hyun;Kim, Hae-Young;Kim, Nam-Hun;Cho, Je-Hyoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.248-254
    • /
    • 2015
  • There has been no previous study on technology development of large capacity drainage pump for rescue sinking ship in the country. The agricultural drainage pump was widely used for rescue sinking ship but this pump has several problems such as efficiency, low displacement and malfunction in winter. Therefore, this paper proposes to solve the problems for swiftly rescue sinking ship and develops the drainage pump system that has $20m^3/min$ mass flow rate specification at suction head 8 m. The centrifugal pump type the most commonly used in the field of naval architecture and ocean engineering was selected and designed based on the requirement specification. The blade design of impeller was derived from the Stepanoff coefficient and requirement specification and used computational fluid dynamics to review the target mass flow rate according to the impeller RPM at design operating conditions. We also performed structure analysis of the impeller to find structurally vulnerable points for the pump in service and completed the theoretical design of drainage pump system.