• 제목/요약/키워드: 회귀함수

검색결과 731건 처리시간 0.032초

잔차 수정을 이용한 불연속 분산함수의 비모수적 추정 (Nonparametric estimation of the discontinuous variance function using adjusted residuals)

  • 허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.111-120
    • /
    • 2016
  • 대부분의 불연속 회귀함수의 커널추정량은 알고 있거나 추정된 불연속점을 기준으로 자료를 분리하여 각각을 독립적으로 회귀함수를 적합하고 있다. 회귀모형에서 분산함수가 불연속점을 가지고 있을 때에도 잔차제곱들을 이용하여 위와 같은 불연속 회귀함수의 커널추정법을 활용하고 있다. Kang 등 (2000)은 $M{\ddot{u}}ller$ (1992)의 불연속점과 점프크기 커널추정량을 이용하여 반응변수의 표본을 연속인 회귀함수로부터 표본인 것처럼 수정하여 불연속 회귀함수를 추정하였다. 본 연구에서는 불연속 분산함수를 추정하기 위하여 Kang 등 (2000)의 방법을 이용한다. Kang과 Huh (2006)의 분산함수의 불연속점과 점프크기 추정량으로 잔차제곱들을 수정하고, 수정된 잔차제곱들을 이용하여 불연속 분산함수 커널추정량을 제안할 것이다. 제안된 추정량의 적분제곱오차의 수렴속도를 보여주고 모의실험을 통하여 기존의 추정량과 제안된 추정량을 비교하고자 한다.

혼합회귀모형에서 콤포넌트 및 설명변수에 대한 벌점함수의 적용 (Joint penalization of components and predictors in mixture of regressions)

  • 박종선;모은비
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.199-211
    • /
    • 2019
  • 주어진 회귀자료에 유한혼합회귀모형을 적합하는 경우 적절한 성분의 수를 선택하고 선택된 각각의 회귀모형에서 의미있는 예측변수들의 집합을 선택하며 동시에 편의와 변동이 작은 회귀계수 추정치들을 얻는 것은 매우 중요하다. 본 연구에서는 혼합선형회귀모형에서 성분의 개수와 회귀계수에 벌점함수를 적용하여 적절한 성분의 수와 각 성분의 회귀모형에 필요한 설명변수들을 동시에 선택하는 방법을 제시하였다. 성분에 대한 벌점은 성분들의 로그값에 SCAD 벌점함수를 적용하였고 회귀계수들에는 SCAD와 더불어 MCP 및 Adplasso 벌점함수들을 사용하여 가상자료와 실제자료들에 대한 결과를 비교하였다. SCAD-SCAD 벌점함수 조합과 SCAD-MCP 조합의 경우 기존의 Luo 등 (2008)의 방법에서 문제가 되었던 과적합 문제를 해결함과 동시에 선택된 성분의 수와 회귀계수들을 효과적으로 선택하였으며 회귀계수들의 추정치에 대한 편의도 크지 않았다. 본 연구는 성분의 수가 알려져 있지 않은 회귀자료에서 적절한 성분의 수와 더불어 각 성분에 대한 회귀모형에서 모형에 필요한 예측변수들을 동시에 선택하는 방법을 제시하였다는데 의미가 있다고 하겠다.

Testing the Existence of a Discontinuity Point in the Variance Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.707-716
    • /
    • 2006
  • 분산함수는 회귀함수와 더불어 회귀모형의 연구에 매우 중요한 함수이며 이 함수가 불연속일 때의 연구는 Delgado and Hidalgo (2000)와 Perron (2001)은 시계열모형에서는 비모수적 추정법에 의해 분산함수의 추정을 연구하였으며 Kang and Huh (2006)은 Perron의 추정법을 회귀모형에 적용하여 분산함수의 불연속점의 추정에 대하여 연구하였고, Huh (2005)는 Kang and Huh의 잔차제곱들을 이용한 분산함수의 불연속점의 추정 대신 이차적률함수를 이용하여 분산함수의 불연속점을 추정하였다. 이는 Kang and Huh의 연구에서 잔차제곱들을 구하기 위하여 회귀함수의 추정이 우선되어야 하기에 전체적인 계산량이 늘어나게 되고, 늘어난 만큼 불연속점 추정의 정도가 떨어지게 됨으로 반응변수의 표본의 제곱을 이용하여 이차적률함수의 추정으로 불연속점을 추정하는 것이 더 용이하기 때문이다. 이러한 연구를 바탕으로 본 연구에서는 Huh의 점프의 크기 추정량의 점근분포를 이용하여 불연속점의 존재 유무에 대한 가설검정법을 제안하였다. 즉, 점프의 크기 추정량의 귀무가설 하의 점근분포가 가지고 있는 장애모수인 불연속점의 위치에서 확률밀도함수와 4차적률함수를 비모수적 방법으로 추정하는 방법을 제안하고 이들의 균일 일치성을 보여 가설검정법을 제안하였다. 불연속점의 추정에 앞서 불연속점의 존재 여부의 가설검정이 우선되어야 하기에 다른 통계적 함수에 대한 불연속점의 연구에서도 이러한 본 논문에서 연구한 방법으로 불연속점의 존재 유무에 대한 가설검정법을 제안 할 수 있을 것이다.

  • PDF

비대칭 라플라스 분포를 이용한 분위수 회귀 (Quantile regression using asymmetric Laplace distribution)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권6호
    • /
    • pp.1093-1101
    • /
    • 2009
  • 분위수 회귀모형은 확률변수들 사이에 확률적인 관계구조를 포함한 함수 모형을 좀 더 완벽하게 추정하도록 제공한다. 본 논문에서는 함수 추정에 로버스트하다고 알려져 있는 서포트벡터기계 기법과 이중벌칙커널기계를 이용하여 분위수 회귀모형을 추정하고자 한다. 이중벌칙커널기계는 고차원의 입력변수에 대한 분위수 회귀가 요구될 때 분위수 회귀모형을 잘 추정한다고 알려져 있다. 또한 본 논문에서는 광범위한 형태의 분위수 회귀모형 추정을 위해서 정규분포보다 비대칭 라플라스 분포를 이용한다. 본 논문에서 제안한 모형은 분위수 회귀모형 추정을 위해서 서포트벡터기계 기법에 이중벌칙커널기계를 이용하여 각각의 평균과 분산을 동시에 추정한다. 평균과 분산함수 추정을 위해 사용된 커널함수의 모수들은 최적의 값을 찾기 위해 일반화근사 교차타당성을 이용한다.

  • PDF

회귀분석을 위한 로버스트 신경망

  • 황창하;김상민;박희주
    • Communications for Statistical Applications and Methods
    • /
    • 제4권2호
    • /
    • pp.327-332
    • /
    • 1997
  • 다층 신경망은 비모수 회귀함수 추정의 한 방법이다. 다충 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있다. 그러나 이 알고리즘은 이상치에 매우 민감하여 이상치를 포함하고 있는 자료에 대하여 원하지 않는 회귀함수를 추정한다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 로버스트 역전파 알고리즘을 제안하고 수학적으로 신경망과 매우 유사한 PRP(projection pursuit regression) 방법, 일반적인 역전파 알고리즘과 모의실험을 통해 비교 분석한다.

  • PDF

잔차를 이용한 코플라 모수 추정 (Residual-based copula parameter estimation)

  • 나옥경;권성훈
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.267-277
    • /
    • 2016
  • 본 연구에서는 잔차를 이용하여 오차항의 코플라 함수를 추정하는 문제를 고려하였다. 확률적 회귀모형을 개별모형으로 갖는 경우, 오차항 대신 잔차들의 경험적 분포함수를 이용하여 구한 코플라 모수에 대한 준모수적 추정량의 성질을 살펴보았으며, 이 추정량이 일치추정량이 되기 위한 조건을 구하였다. 응용사례로 코플라-자기회귀이동평균 모형을 다루었으며, 모의실험을 통해 자기회귀 근사를 통해 얻은 잔차를 이용하여 계산한 추정량의 성질도 살펴보았다.

가능도함수를 이용한 불연속점 수의 추정 (Estimation of the number of discontinuity points based on likelihood)

  • 허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권1호
    • /
    • pp.51-59
    • /
    • 2010
  • 일반화선형모형에서 회귀함수가 하나의 불연속점을 가질 때, Huh (2009)는 하나의 모수를 가지는 지수족의 가능도함수를 한쪽방향커널을 이용하여 그 불연속점의 위치와 점프크기를 추정하였다. 이 논문에서는 미지의 불연속점 수 q개를 가지는 회귀함수인 경우에, Huh (2009)가 제안한 점프크기 추정량의 점근분포를 이용한 가설검정법을 소개하고, 그 가설검정법을 이용한 불연속점 수를 추정하는 알고리듬을 제안하고, 모의실험을 통하여 추정의 정도를 알아보고자 한다.

변수평활량을 이용한 커널회귀함수 추정 (On variable bandwidth Kernel Regression Estimation)

  • 석정하;정성석;김대학
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.179-188
    • /
    • 1998
  • 커널형 회귀함수의 추정법 중에서 국소 다항회귀 추정법이 가장 우수한 것으로 알려져 있다. 국소다항회귀 추정법에서도 다른 종류의 커널추정량과 마찬가지로 평활량이 중요한 역할을 한다. 특히 회귀함수가 복잡한 구조를 가질 때 변수평활량(variable band-width)을 사용하는 것이 타당할 것이다. 본 연구에서는 완전자료기저(fully automatic, fully data-driven) 변수평활량 선택법을 제안한다. 이 선택법은 편향과 분산의 예비추정에 필요한 평활량을 교차타당성 방법으로 선택하여 MSE를 추정하고 그 값을 최소화하는 평활량을 택하는 것이다. 제안된 방법의 우수성을 모의실험을 통하여 확인하였다. 그리고 제안된 방법은 자료점이 성긴(sparse)부분에서 생길 수 있는 문제점 즉 X'X의 비정칙성(non-singularity)을 해결할 수 있는 방법이라는 데에도 큰 의미가 있다.

  • PDF

효모 마이크로어레이 유전자 발현데이터에 대한 가우시안 과정 회귀를 이용한 유전자 선별 및 군집화 (Screening and Clustering for Time-course Yeast Microarray Gene Expression Data using Gaussian Process Regression)

  • 김재희;김태훈
    • 응용통계연구
    • /
    • 제26권3호
    • /
    • pp.389-399
    • /
    • 2013
  • 본 연구에서는 가우시안 과정회귀방법을 소개하고 시계열 마이크로어레이 유전자 발현데이터에 대해 가우시안 과정회귀를 적용한 사례를 보이고자한다. 가우시안 과정회귀를 적합하여 로그 주변우도함수 비를 이용한 유전자를 선별방법에 대한 모의실험을 통해 민감도, 특이도, 위발견율 등을 계산하여 선별방법으로의 활용성을 보였다. 실제 효모세포주기 데이터에 대해 제곱지수공분산함수를 고려한 가우시안 과정회귀를 적합하여 로그 주변우도함수 비를 이용하여 차변화된 유전자를 선별한 후, 선별된 유전자들에 대해 가우시안 모형기반 군집화를 하고 실루엣 값으로 군집유효성을 보였다.

범함수 회귀모형을 이용한 성장단계별 양파무게의 추정 (Estimation of Onion Weight on Growth Stages Using Functional Regression Model)

  • 조완현;나명환;김준기;김덕현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.858-860
    • /
    • 2019
  • 본 논문에서 우리는 범함수 회귀모형을 이용한 양파의 성장단계별 무게를 예측할 수 있는 새로운 통계적 추정방법을 제안한다. 여기서 우리는 풍속, 평균온도, 강우량, 일조량 그리고 습도 등 나타내는 환경요인들을 설명변수들로 사용하고, 양파의 성장단계별 무게를 반응변수로 사용하여 범함수 회귀모형을 적용하였다. 먼저 그래프분석과 상관분석을 통하여 우리는 일일 평균온도는 양파의 무게 증진에 가장 큰 양의상관이 있고, 풍속이나 습도 그리고 일조량들은 양파의 성장에 약간의 영향력이 있으며 강우량은 양파의 성장에 전혀 도움이 안됨을 알 수 있었다. 두 번째로 범함수 회귀 분석을 통하여 얻어진 각 환경요인들에 대한 회귀계수들의 그림을 통하여 우리는 양파의 성장 기간 동안에 이들의 무게를 향상시키기 위해서는 어떻게 환경요인들을 관리해야 되는 가를 알 수 있는 재배방법을 유도하였다.