References
- Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-index models. Journal of the Amrican Statistical Association, 92, 477-489. https://doi.org/10.2307/2965697
- Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. Journal of the Amrican Statistical Association, 90, 141-150. https://doi.org/10.2307/2291137
- Green P. J. and Silverman, B. W. (1994). Nonparametric regression and generalized linear models, Chapman and Hall, London.
- Hart, J. D. and Yi, S. (1998). One-sided cross-validation. Journal of the Amrican Statistical Association, 93, 620-631. https://doi.org/10.2307/2670113
- Huh, J. (2004). Nonparametric discontinuity point estimation in generalized linear model. Journal of the Korean Statistical Society, 33, 59-78.
- Huh, J. (2005). Nonparametric detection of a discontinuity point in the variance function with the second moment function. Journal of Korean Data & Information Science Society, 16, 591-601.
- Huh, J. (2006). Testing the existence of a discontinuity point in the variance function. Journal of Korean Data & Information Science Society, 17, 707-716.
- Huh, J. (2007). Nonparametric detection algorithm of discontinuity points in the variance function. Journal of Korean Data & Information Science Society, 18, 669-678.
- Huh, J. (2009). Detection of a change point based on local-likelihood. Journal of Multivariate Analysis, in revision. https://doi.org/10.1016/j.jmva.2010.02.007
- Huh, J. (2009). Testing of a discontinuity point in the log-variance function based on likelihood. Journal of Korean Data & Information Science Society, 20, 1-9.
- Huh, J. and Carriere, K. C. (2002). Estimation of regression functions with a discontinuity in a derivative with local polynomial fits. Statistics and Probability Letters, 56, 329-343. https://doi.org/10.1016/S0167-7152(02)00017-2
- Huh, J. and Park, B. U. (2002). Likelihood-based local polynomial fitting for single-index models. Journal of Multivariate Analysis, 80, 302-321 https://doi.org/10.1006/jmva.2000.1984
- Huh, J. and Park, B. U. (2004). Detection of change point with local polynomial fits for random design case. Australian and New Zealand Journal of Statistics, 46, 425-441. https://doi.org/10.1111/j.1467-842X.2004.00340.x
- Jose, C. T. and Ismail, B. (1999). Change points in nonparametric regression functions. Communication in Statistics-Theory and Methods, 28, 1883-1902. https://doi.org/10.1080/03610929908832393
- Kim, J. T., Choi, H. and Huh, J. (2003). Detection of change-points by local linear regression fit. The Korean Communications in Statistics, 10, 31-38. https://doi.org/10.5351/CKSS.2003.10.1.031
- Loader, C. R. (1996). Change point estimation using nonparametric regression. Annals of Statistics, 24, 1667-1678. https://doi.org/10.1214/aos/1032298290
- McCullagh, P. and Nelder, J. A. (1989). Generalized linear models, 2nd ed., Chapman and Hall, London.
- Muller, H. G. (1992). Change-points in nonparametric regression analysis. Annals of Statistics, 20, 737-761. https://doi.org/10.1214/aos/1176348654
- Stute, W. (1982). A law of the logarithm for kernel density estimators. Annals of Probability, 10, 414-422. https://doi.org/10.1214/aop/1176993866
- Yin, Q. (1988). Detection of the number, locations and magnitudes of jumps. Communications in Statistics-Stochastic Models, 4, 445-455. https://doi.org/10.1080/15326348808807089