Estimation of the number of discontinuity points based on likelihood

가능도함수를 이용한 불연속점 수의 추정

  • Huh, Jib (Department of Statistics, Duksung Women's University)
  • 허집 (덕성여자대학교 정보통계학과)
  • Published : 2010.01.31

Abstract

In the case that the regression function has a discontinuity point in generalized linear model, Huh (2009) estimated the location and jump size using the log-likelihood weighted the one-sided kernel function. In this paper, we consider estimation of the unknown number of the discontinuity points in the regression function. The proposed algorithm is based on testing of the existence of a discontinuity point coming from the asymptotic distribution of the estimated jump size described in Huh (2009). The finite sample performance is illustrated by simulated example.

일반화선형모형에서 회귀함수가 하나의 불연속점을 가질 때, Huh (2009)는 하나의 모수를 가지는 지수족의 가능도함수를 한쪽방향커널을 이용하여 그 불연속점의 위치와 점프크기를 추정하였다. 이 논문에서는 미지의 불연속점 수 q개를 가지는 회귀함수인 경우에, Huh (2009)가 제안한 점프크기 추정량의 점근분포를 이용한 가설검정법을 소개하고, 그 가설검정법을 이용한 불연속점 수를 추정하는 알고리듬을 제안하고, 모의실험을 통하여 추정의 정도를 알아보고자 한다.

Keywords

References

  1. Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-index models. Journal of the Amrican Statistical Association, 92, 477-489. https://doi.org/10.2307/2965697
  2. Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. Journal of the Amrican Statistical Association, 90, 141-150. https://doi.org/10.2307/2291137
  3. Green P. J. and Silverman, B. W. (1994). Nonparametric regression and generalized linear models, Chapman and Hall, London.
  4. Hart, J. D. and Yi, S. (1998). One-sided cross-validation. Journal of the Amrican Statistical Association, 93, 620-631. https://doi.org/10.2307/2670113
  5. Huh, J. (2004). Nonparametric discontinuity point estimation in generalized linear model. Journal of the Korean Statistical Society, 33, 59-78.
  6. Huh, J. (2005). Nonparametric detection of a discontinuity point in the variance function with the second moment function. Journal of Korean Data & Information Science Society, 16, 591-601.
  7. Huh, J. (2006). Testing the existence of a discontinuity point in the variance function. Journal of Korean Data & Information Science Society, 17, 707-716.
  8. Huh, J. (2007). Nonparametric detection algorithm of discontinuity points in the variance function. Journal of Korean Data & Information Science Society, 18, 669-678.
  9. Huh, J. (2009). Detection of a change point based on local-likelihood. Journal of Multivariate Analysis, in revision. https://doi.org/10.1016/j.jmva.2010.02.007
  10. Huh, J. (2009). Testing of a discontinuity point in the log-variance function based on likelihood. Journal of Korean Data & Information Science Society, 20, 1-9.
  11. Huh, J. and Carriere, K. C. (2002). Estimation of regression functions with a discontinuity in a derivative with local polynomial fits. Statistics and Probability Letters, 56, 329-343. https://doi.org/10.1016/S0167-7152(02)00017-2
  12. Huh, J. and Park, B. U. (2002). Likelihood-based local polynomial fitting for single-index models. Journal of Multivariate Analysis, 80, 302-321 https://doi.org/10.1006/jmva.2000.1984
  13. Huh, J. and Park, B. U. (2004). Detection of change point with local polynomial fits for random design case. Australian and New Zealand Journal of Statistics, 46, 425-441. https://doi.org/10.1111/j.1467-842X.2004.00340.x
  14. Jose, C. T. and Ismail, B. (1999). Change points in nonparametric regression functions. Communication in Statistics-Theory and Methods, 28, 1883-1902. https://doi.org/10.1080/03610929908832393
  15. Kim, J. T., Choi, H. and Huh, J. (2003). Detection of change-points by local linear regression fit. The Korean Communications in Statistics, 10, 31-38. https://doi.org/10.5351/CKSS.2003.10.1.031
  16. Loader, C. R. (1996). Change point estimation using nonparametric regression. Annals of Statistics, 24, 1667-1678. https://doi.org/10.1214/aos/1032298290
  17. McCullagh, P. and Nelder, J. A. (1989). Generalized linear models, 2nd ed., Chapman and Hall, London.
  18. Muller, H. G. (1992). Change-points in nonparametric regression analysis. Annals of Statistics, 20, 737-761. https://doi.org/10.1214/aos/1176348654
  19. Stute, W. (1982). A law of the logarithm for kernel density estimators. Annals of Probability, 10, 414-422. https://doi.org/10.1214/aop/1176993866
  20. Yin, Q. (1988). Detection of the number, locations and magnitudes of jumps. Communications in Statistics-Stochastic Models, 4, 445-455. https://doi.org/10.1080/15326348808807089