• Title/Summary/Keyword: 회귀함수

Search Result 731, Processing Time 0.021 seconds

Nonparametric estimation of the discontinuous variance function using adjusted residuals (잔차 수정을 이용한 불연속 분산함수의 비모수적 추정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • In usual, the discontinuous variance function was estimated nonparametrically using a kernel type estimator with data sets split by an estimated location of the change point. Kang et al. (2000) proposed the Gasser-$M{\ddot{u}}ller$ type kernel estimator of the discontinuous regression function using the adjusted observations of response variable by the estimated jump size of the change point in $M{\ddot{u}}ller$ (1992). The adjusted observations might be a random sample coming from a continuous regression function. In this paper, we estimate the variance function using the Nadaraya-Watson kernel type estimator using the adjusted squared residuals by the estimated location of the change point in the discontinuous variance function like Kang et al. (2000) did. The rate of convergence of integrated squared error of the proposed variance estimator is derived and numerical work demonstrates the improved performance of the method over the exist one with simulated examples.

Joint penalization of components and predictors in mixture of regressions (혼합회귀모형에서 콤포넌트 및 설명변수에 대한 벌점함수의 적용)

  • Park, Chongsun;Mo, Eun Bi
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.199-211
    • /
    • 2019
  • This paper is concerned with issues in the finite mixture of regression modeling as well as the simultaneous selection of the number of mixing components and relevant predictors. We propose a penalized likelihood method for both mixture components and regression coefficients that enable the simultaneous identification of significant variables and the determination of important mixture components in mixture of regression models. To avoid over-fitting and bias problems, we applied smoothly clipped absolute deviation (SCAD) penalties on the logarithm of component probabilities suggested by Huang et al. (Statistical Sinica, 27, 147-169, 2013) as well as several well-known penalty functions for coefficients in regression models. Simulation studies reveal that our method is satisfactory with well-known penalties such as SCAD, MCP, and adaptive lasso.

Testing the Existence of a Discontinuity Point in the Variance Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.707-716
    • /
    • 2006
  • When the regression function is discontinuous at a point, the variance function is usually discontinuous at the point. In this case, we had better propose a test for the existence of a discontinuity point with the regression function rather than the variance function. In this paper we consider that the variance function only has a discontinuity point. We propose a nonparametric test for the existence of a discontinuity point with the second moment function since the variance function and the second moment function have the same location and jump size of the discontinuity point. The proposed method is based on the asymptotic distribution of the estimated jump size.

  • PDF

Quantile regression using asymmetric Laplace distribution (비대칭 라플라스 분포를 이용한 분위수 회귀)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1093-1101
    • /
    • 2009
  • Quantile regression has become a more widely used technique to describe the distribution of a response variable given a set of explanatory variables. This paper proposes a novel modelfor quantile regression using doubly penalized kernel machine with support vector machine iteratively reweighted least squares (SVM-IRWLS). To make inference about the shape of a population distribution, the widely popularregression, would be inadequate, if the distribution is not approximately Gaussian. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density.

  • PDF

회귀분석을 위한 로버스트 신경망

  • 황창하;김상민;박희주
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.327-332
    • /
    • 1997
  • 다층 신경망은 비모수 회귀함수 추정의 한 방법이다. 다충 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있다. 그러나 이 알고리즘은 이상치에 매우 민감하여 이상치를 포함하고 있는 자료에 대하여 원하지 않는 회귀함수를 추정한다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 로버스트 역전파 알고리즘을 제안하고 수학적으로 신경망과 매우 유사한 PRP(projection pursuit regression) 방법, 일반적인 역전파 알고리즘과 모의실험을 통해 비교 분석한다.

  • PDF

Residual-based copula parameter estimation (잔차를 이용한 코플라 모수 추정)

  • Na, Okyoung;Kwon, Sunghoon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.267-277
    • /
    • 2016
  • This paper considers we consider the estimation of copula parameters based on residuals in stochastic regression models. We prove that a semiparametric estimator using residual empirical distributions is consistent under some conditions and apply the results to the copula-ARMA model. We provide simulation results for illustration.

Estimation of the number of discontinuity points based on likelihood (가능도함수를 이용한 불연속점 수의 추정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • In the case that the regression function has a discontinuity point in generalized linear model, Huh (2009) estimated the location and jump size using the log-likelihood weighted the one-sided kernel function. In this paper, we consider estimation of the unknown number of the discontinuity points in the regression function. The proposed algorithm is based on testing of the existence of a discontinuity point coming from the asymptotic distribution of the estimated jump size described in Huh (2009). The finite sample performance is illustrated by simulated example.

On variable bandwidth Kernel Regression Estimation (변수평활량을 이용한 커널회귀함수 추정)

  • Seog, Kyung-Ha;Chung, Sung-Suk;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.179-188
    • /
    • 1998
  • Local polynomial regression estimation is the most popular one among kernel type regression estimator. In local polynomial regression function esimation bandwidth selection is crucial problem like the kernel estimation. When the regression curve has complicated structure variable bandwidth selection will be appropriate. In this paper, we propose a variable bandwidth selection method fully data driven. We will choose the bandwdith by selecting minimising estiamted MSE which is estimated by the pilot bandwidth study via croos-validation method. Monte carlo simulation was conducted in order to show the superiority of proposed bandwidth selection method.

  • PDF

Screening and Clustering for Time-course Yeast Microarray Gene Expression Data using Gaussian Process Regression (효모 마이크로어레이 유전자 발현데이터에 대한 가우시안 과정 회귀를 이용한 유전자 선별 및 군집화)

  • Kim, Jaehee;Kim, Taehoun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.389-399
    • /
    • 2013
  • This article introduces Gaussian process regression and shows its application with time-course microarray gene expression data. Gene screening for yeast cell cycle microarray expression data is accomplished with a ratio of log marginal likelihood that uses Gaussian process regression with a squared exponential covariance kernel function. Gaussian process regression fitting with each gene is done and shown with the nine top ranking genes. With the screened data the Gaussian model-based clustering is done and its silhouette values are calculated for cluster validity.

Estimation of Onion Weight on Growth Stages Using Functional Regression Model (범함수 회귀모형을 이용한 성장단계별 양파무게의 추정)

  • Cho, Wanhyun;Na, Myeong Hwan;Kim, Junki;Kim, Deoghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.858-860
    • /
    • 2019
  • 본 논문에서 우리는 범함수 회귀모형을 이용한 양파의 성장단계별 무게를 예측할 수 있는 새로운 통계적 추정방법을 제안한다. 여기서 우리는 풍속, 평균온도, 강우량, 일조량 그리고 습도 등 나타내는 환경요인들을 설명변수들로 사용하고, 양파의 성장단계별 무게를 반응변수로 사용하여 범함수 회귀모형을 적용하였다. 먼저 그래프분석과 상관분석을 통하여 우리는 일일 평균온도는 양파의 무게 증진에 가장 큰 양의상관이 있고, 풍속이나 습도 그리고 일조량들은 양파의 성장에 약간의 영향력이 있으며 강우량은 양파의 성장에 전혀 도움이 안됨을 알 수 있었다. 두 번째로 범함수 회귀 분석을 통하여 얻어진 각 환경요인들에 대한 회귀계수들의 그림을 통하여 우리는 양파의 성장 기간 동안에 이들의 무게를 향상시키기 위해서는 어떻게 환경요인들을 관리해야 되는 가를 알 수 있는 재배방법을 유도하였다.