• Title/Summary/Keyword: 회귀알고리즘

검색결과 558건 처리시간 0.034초

항로거리 산출을 위한 실용 알고리즘 개발 (Development of a Practical Algorithm for en-route distance calculation)

  • 박건환;홍혜진;박재우;구성관
    • 한국항행학회논문지
    • /
    • 제26권6호
    • /
    • pp.434-440
    • /
    • 2022
  • ICAO (international civil aviation organization)에서는 전략적인 의사결정과 항공교통관리 평가를 위해 세계항행계획인 GANP (global air navigation plan) 수행을 체약국에게 권고하였다. 본 연구에서는 항공교통관리 평가를 위해 제시된 KPI (key performance indicator) 05 실제 항로 연장에서 항로거리를 구하는 새로운 방법을 제안하였다. 이를 위해 한 달간의 항적 데이터를 수집하고 ICAO에서 제시한 방법과 본 저자가 제시하는 방법으로 각각 항로거리를 산출하였다. ICAO 방법은 반경 40 NM 원형에 대한 원의 방정식과 항적 데이터 내 원에 근접한 내·외부 지점에 대한 직선의 방정식을 통하여 교점을 추정하여야 하고, 네 가지의 비행거리를 계산하여 항로거리를 산출한다. 본 연구에서 제시한 방법은 교점을 추정하지 않고 두 가지의 비행거리를 계산하여 항로거리를 산출한다. 두 방법의 오차를 확인하기 위해 회귀모형 성능평가지표인 RMSE (root mean square error)와 결정계수 R2 를 사용하였다.

자살 고위험군 노인: 원인 파악 및 예측 모델 개발 (High Suicidal Risk Group of Elderly: Identification of Causal Factors and Development of Predictive Model)

  • 박가연;신우식;김희웅
    • 경영정보학연구
    • /
    • 제25권3호
    • /
    • pp.59-81
    • /
    • 2023
  • 한국의 노인(65세 이상) 자살 문제는 점차 심각해지고 있는 추세이다. 급격한 인구 고령화 흐름에 따라 이러한 고령층의 자살 추세가 더욱 가속화될 것으로 추정되고 있어, 노인 자살을 예방하고 감소시키는 것이 개인 뿐만 아니라 중요한 사회적 과제로 대두되고 있다. 따라서 본 연구는 한국 노인들을 대상으로 자살 생각의 원인 요인을 파악하고 예측 모델을 개발하는 것을 목적 한다. 본 연구는 한국복지패널조사에서 제공하는 7개년의 패널 데이터를 활용하였으며 자살의 대인 관계 이론(interpersonal theory of suicide)과 사회 해체 이론(social disorganization theory)을 바탕으로 노인 자살의 잠재 원인 요인들을 선정한다. 다음으로 노인의 자살 생각에 대한 원인 요인 파악을 위해 패널 로짓 모형 분석을 진행하고 노인 자살 생각의 예측 모델 개발을 위해 딥 러닝과 머신 러닝 알고리즘을 활용한다. 본 연구는 계량 모형 분석을 통해 검증한 주요 원인 요인들을 활용하여 노인 자살을 예방할 수 있는 구체적인 노인 복지 정책 수립에 기여하고자 한다. 본 연구에서 제시된 예측 모델은 자살 고위험군 노인을 선별하고 관리할 수 있는 방안 마련의 기반을 제공한다. 또한 본 연구는 혼합방법론의 시너지를 보였다는 점에서 학술적 시사점을 가진다.

선형기계학습모델을 이용한 자갈해빈상에서의 쇄파지표 예측 (A Study on the Predictions of Wave Breaker Index in a Gravel Beach Using Linear Machine Learning Model)

  • 안을혁;이영찬;김도삼;이광호
    • 한국해안·해양공학회논문집
    • /
    • 제36권2호
    • /
    • pp.37-49
    • /
    • 2024
  • 지금까지 쇄파는 발생기구의 본질적인 복잡성으로 인해 실내수리모형실험을 통해 쇄파파고 및 쇄파수심 등의 쇄파지표 예측을 위한 많은 경험식이 제안되어 왔다. 하지만, 자갈해빈에 대한 쇄파의 특성 및 쇄파지표예측을 위한 연구는 거의 수행되어 있지 않았다. 본 연구에서는 자갈해빈을 대상으로 쇄파파고 및 쇄파수심의 예측을 위하여 회귀 또는 분류 문제와 관련된 다양한 연구 분야에서 높은 예측 성능을 보이는 대표적인 선형기반 기계학습기법에 기반한 쇄파지표를 예측하고자 하였다. 먼저, 자갈해빈에 대하여 기존에 제안된 쇄파지표의 경험식의 적용성을 검토하고 기존의 경험식의 자갈해빈의 쇄파지표 예측성능의 한계성을 극복하기 위하여 다양한 선형기반 기계학습 알고리즘을 적용하여 쇄파지표 예측모델을 구축하였다. 구축된 기계학습모델 중 자갈해빈에서 발생하는 쇄파파고 및 쇄파수심에 대한 높은 예측성능을 보인 모델을 기반으로 손쉬운 계산이 가능한 쇄파지표에 대한 새로운 산정식을 제안하였고 수리모형실험결과 및 기존의 경험식과 비교하고 새롭게 제안한 쇄파지표의 예측성능을 검증하였다. 본 연구에서 제안한 쇄파지표에 대한 경험식은 단순한 다항식임에도 불구하고 자갈해빈에 대한 양호한 예측성능을 보였다.

메타분석에 기반한 자살 예측 연구에서 전통적 통계 기법과 머신러닝 기반 접근법의 예측력 비교 (Comparison between Machine Learning and Traditional Tecnique for Suicide Prediction based on Meta-analysis)

  • 권혁준;서종한
    • 한국심리학회지 : 문화 및 사회문제
    • /
    • 제30권3호
    • /
    • pp.239-265
    • /
    • 2024
  • 본 연구는 자살 관련 행동에 대해 전통적인 예측 모형(기법)과 머신러닝 알고리즘을 활용한 연구의 예측력을 비교하기 위한 목적에서 수행되었다. 따라서 체계적 리뷰 수준에서 벗어나 메타분석을 통해 과학적으로 두 가지 기법의 예측력에 대해 살펴보고, 지역적인 수준에서 특히 국내 연구를 통해 알 수 있는 변인들을 분석하여 추후 자살 관련 행동 예측 연구에 도움을 주고자 하였다. 이를 위해 머신러닝을 사용한 연구 50개와 전통적 기법을 활용한 연구 74개로 총 124개의 문헌이 메타분석에 포함되었다. 연구 결과 전통적 기법을 활용한 연구들의 통합 AUC는 .770으로 머신러닝을 활용한 연구들의 통합 AUC값인 .853보다 낮은 것으로 나타났다. 특히 아시아권의 연구(AUC = .944)가 서양(AUC = .820)과 한국(AUC = .864)의 연구에 비해 높은 정확도를 나타내었다. 국내 연구에서의 조절효과를 추가적으로 분석한 결과 남성의 비율이 많을수록, 예측 대상이 자살 시도일수록 예측 정확도가 높았으며, 예측 대상이 자살 사망일수록, 그리고 신경망분석(Neural Network)을 활용한 연구일수록 예측 정확도가 낮았다. 본 연구는 자살 관련 행동의 예측에 대한 다양한 연구결과를 종합하고, 머신러닝을 활용한 예측의 효과성을 검증하는 한편, 국내에서 활용가능한 변인을 탐색하는 데 그 의의가 있다.

『주역』과 인공지능 (The Zhouyi and Artificial Intelligence)

  • 방인
    • 철학연구
    • /
    • 제145권
    • /
    • pp.91-117
    • /
    • 2018
  • 이 논문의 목적은 "주역"과 인공지능 사이에 존재하는 유사성과 차이점을 밝히려는데 있다. "주역"의 점술은 인류의 가장 오래된 지식체계 가운데 하나이며, 인공지능은 인류가 만들어낸 과학의 발명 가운데서도 최전선에 서 있는 지식체계이다. 양자 사이에는 아무런 연관성이 없는 것처럼 보이지만, 빅 히스토리(Big History)의 관점에서 본다면 "주역"과 인공지능은 기호학적 관점에서 볼 때 다음과 같은 공통점을 지닌다. 첫째, 인공지능과 "주역"은 인공언어를 사용하는 기호 체계에 의지한다. 둘째, 점술과 인공지능을 가능하게 하는 원리는 모방과 재현에 있다. 셋째, 인공지능과 "주역"은 모두 추리 과정을 수행하기 위하여 알고리즘(algorithm)에 의지하며, 그 알고리즘은 이진법(二進法)을 기본적 수단으로 삼는다. 넷째, "주역"과 인공지능은 지식을 획득하기 위한 수단으로 유비(類比)의 방법에 의존한다. 물론 이러한 몇 가지 유사성이 있다고 해서 "주역"이 과학이 될 수 있는 것은 아니다. 그럼에도 불구하고 전혀 거리가 먼 것 같은 두 지식체계 사이에 이러한 공통점이 있다는 것을 발견함으로써 문명의 본질에 관해 중요한 통찰을 얻을 수 있다. "주역"과 인공지능은 미지(未知)의 세계에 대한 새로운 지식을 얻기 위하여 지능을 사용한다. 그러나 우리는 "주역"의 점술의 과정에 개입하는 지능이 어떤 종류의 지능인지 정확하게 알지 못한다. 마찬가지로 인공지능의 성격에 대해서도 아직 잘 알지 못하고 있다. 미지의 주체에 의해 운용되는 지능은 우리에게 신비롭고도 두려운 존재이다. "주역"의 점술이 우리에게 점단(占斷)을 행하는 초월적 주체가 무엇인지에 관해 경외하는 마음을 품게 하였듯이, 기계속에 보이지 않는 인공지능의 주체도 우리를 두렵게 한다. 뿐만 아니라 인공지능의 등장은 의식있는 존재만이 지능을 가질 수 있다고 간주했던 전통철학의 관점에 도전을 던지고 있다. 분명한 것은 기호를 매개로 진행되어 온 문명의 발전 과정이 이제 새로운 단계로 진입하고 있다는 사실이다. 인공지능이 인간의 지능을 능가하는 시점을 특이점(singularity)이라고 하는데, 필자는 이 용어를 구문명(舊文明)과 신문명(新文明)의 경계를 가리키는 임계점(臨界點)이라는 의미로 사용하였다. 소옹(邵雍)의 용어를 빌려서 표현한다면 구문명은 선천(先天)이고, 신문명은 후천(後天)이다. 임계점을 지나면 질적 변화가 일어나 새로운 단계로 진입하며 더 이상 과거로 회귀하지 않는다. 현대 문명은 특이점을 통과했다는 징후를 여러 측면에서 보이고 있다. 후천개벽은 조선 후기의 종교 사상가들에게는 예언이었지만 어느덧 소리 없이 현실로 다가와 이미 우리 곁에 있다.

입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구 (A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection)

  • 이종식;안현철
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.147-168
    • /
    • 2017
  • 오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.

사고가 시각을 바꾼다: 조절 초점에 따른 소비자 감성 기반 웹 스타일 평가 모형 및 추천 알고리즘 개발 (Individual Thinking Style leads its Emotional Perception: Development of Web-style Design Evaluation Model and Recommendation Algorithm Depending on Consumer Regulatory Focus)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.171-196
    • /
    • 2018
  • 본 연구는 디자인 영역 중 웹 스타일에 대해서 소비자 감성과 만족과의 관계를 연구했다. 기존 웹 스타일 연구들은 웹의 레이아웃과 구조도 등과 색상 등이 감성에 미치는 영향에서 연구했다. 본 연구는 기존 연구들과 차별되게 웹의 구성 요소를 배제하고 소비자의 감성 지표만을 갖고 소비자 만족과의 관계를 분석했다. 분석을 위해 검증을 위해 소비자 204명을 대상으로 40개 웹 스타일 테마를 선정, 각 소비자에게 4개씩 평가하도록 하였다. 소비자에게 평가하도록 한 감성 형용사는 18개의 대비되는 쌍을 갖는 감성 형용사로 구성하였고, 요인 분석을 통해 상위 감성 지표를 추출했다. 각 감성 지표들은 '부드러움', '모던함', '명확함', '꽉 참' 이었으며, 감성지표들이 소비자 만족에 미치는 영향이 다를 것으로 판단하여 가설을 수립했다. 분석 결과에 따라 가설 1과 2, 3은 채택되었으며, 가설 4의 경우는 기각되었다. 가설 4의 경우 기각되었지만 정의 방향이 아닌 부의 방향으로 유의한 것으로 나타났다. 이때, 조절 초점 성향이 감성이라는 정보처리 과정에서 소비자 만족에 미치는 영향이 다를 것으로 판단했다. 조절 초점 성향은 조직 행동 및 의사결정에 영향을 주기도 하며, 정치, 문화, 윤리적 판단 및 행동은 물론 광범위적 심리적 문제와 사고 프로세스, 감정적 반응에도 영향을 미친다. 때문에 각 감성 지표에 대한 조절 초점 간 차이를 확인할 필요성이 있고, 각 감성 지표에 대한 세부 가설을 수립했다. 세부 가설을 검증하기 위해 조절 회귀 분석을 수행했다. 분석 결과 가설 5는 부분적으로 지지됐고, 가설 5.3만 지지되었고, 5.4의 경우 기각되었지만 가설과의 반대 방향으로 지지되었다. '명확함'의 경우 향상 초점이 소비자 만족에 더 큰 영향을 보였고, 예방 초점일수록 '꽉 참'을 더 선호한 것으로 나타났다. 분석 결과를 바탕으로 조절 초점 성향을 향상, 예방, 중간 성향으로 3집단으로 구분, 소비자 감성 기반으로 웹 스타일에 대한 추천을 할 수 있는 알고리즘을 개발했다.

중소기업 기술 유출에 대한 조기경보시스템 개발에 대한 연구 (Development on Early Warning System about Technology Leakage of Small and Medium Enterprises)

  • 서봉군;박도형
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.143-159
    • /
    • 2017
  • 급속한 IT의 발전으로 인해 개인정보뿐만 아니라 기업이 보유하고 있는 핵심 기술 및 정보에 대한 유출 위협이 중요한 이슈로 인식되고 있다. 기업에게 있어서 보유하고 있는 핵심 기술은 기업의 생존 및 지속적으로 경쟁 우위를 차지하기 위해 매우 중요한 부분이다. 최근 기술 침해 사례가 많이 일어나고 있는데, 기술 유출은 기업에게 있어서 주가하락 등의 막대한 재무적인 손실을 가져올 뿐만 아니라, 기업의 신뢰에 손상을 입게 되고, 기업의 발전을 지연시키게 되는 악영향을 미치게 된다. 특히, 대기업에 비해 핵심기술이 기업 내 중요한 많은 부분을 차지하는 중소기업에 있어서 기술 유출에 대한 대비는 기업의 존립에 있어서 필수적인 요소로 볼 수 있다. 이처럼 정보 보안 관리의 필요성과 중요성이 대두되면서 기업 입장에서 조기에 기술 침해 위협에 대해 확인하고 대비할 필요가 있다. 본 연구에서는 기술 유출에 영향을 미치는 요인들을 탐색하는 실증 분석을 수행하고, 인공지능 알고리즘을 통해 기술유출 조기경보시스템을 개발하고자 한다. 구체적으로 본 연구에서는 중소기업이 보유한 기술 유출에 영향을 미치는 요인들을 로지스틱 회귀분석을 통해 확인해보고, 통계분석을 통해 검증된 요인들을 기반으로 인공지능 여러 기법들 중 하나인 Support Vector Machine을 활용하여 기술침해 가능성을 조기에 알려주는 모형을 개발하였다. 본 연구에서 제안하는 기술 유출 가능성에 대한 조기 경보 모형을 통해 기업 및 정부 관점에서 기술 유출을 미리 예방할 수 있는 기회를 제공할 수 있을 것으로 기대된다.

교차로 교통상충기준 개발 및 평가에 관한 연구 (Development and Evaluation of Traffic Conflict Criteria at an intersection)

  • 하태준;박형규;박제진;박찬모
    • 대한교통학회지
    • /
    • 제20권2호
    • /
    • pp.105-115
    • /
    • 2002
  • 현재까지 교차로 위험도 측정 방법은 실제 사고 자료를 이용한 분석을 통해 이루어져 왔다. 하지만 사고기록 자료의 수집에 많은 시간이 소요되고 사고기록자료의 신뢰성과 정확성의 결여로 인하여 사고기록자료를 통해 신속하고 정확한 교차로의 위험정도와 안전대책을 결정하기란 매우 어렵다고 할 수 있다. 따라서, 보다 신속하고 정확하게 교차로의 위험도를 예측할 수 있는 기법이 요구되는 바, 그 대안으로 교통상충기법이 제시되고 있다. 하지만 상충측정시 측정기준이 명확하지 않아 조사자의 주관적 판단에 의존하게 되므로 상충자료의 신뢰성에 문제점이 제시되고 있으며, 이에따라 객관적인 상충측정기준 수립에 관한 필요성이 대두되고 있다. 본 논문에서는 교차로에서 발생하는 상충유형을 선행차량과 후행차량의 진행방향별 상충특성을 중심으로 후미추돌, 측면충돌, 직각충돌, 그리고 대향좌회전충돌유형의 4가지로 분류하고, 공학적인 이론을 기반으로 정확하고 객관적인 상충측정기준을 정립하였으며, 정립된 상충기준에 의한 상충조사자료와 사고자료의 상관관계 분석을 통해 본 연구에서 제시한 상충기준의 적합성을 검증하였으며, 사고-상충, EPDO-상충간의 단순선형회귀분석을 실시하여 상충조사를 통하여 교차로의 위험도를 예측할 수 있음을 밝혔다. 교통상충측정시 본 연구에서 제시한 상충측정기준을 적용한다면 보다 신속하고 정확한 교차로 위험도 예측이 가능할 것이며, 이를 통해 교차로 운영개선효과와 위험교차로의 선정 및 관리 등에 효율적으로 활용될 수 있을 것으로 기대된다. 향후 본 연구에서 정립된 상충기준의 타지역 타교차로에 확대 적용 및 검증과 더불어, 본 연구에서 제시하는 유형에 포함되지 않는 기타 유형에 대한 상충기준의 개발이 필요할 것이다.에 가까운 우수한 해를 얻을 수 있다는 것을 알 수 있다. 비록 프로그래밍 과정이나 이론의 정식화가 유한요소법에 비해 상당히 어려운 점은 있으나 무요소법은 요소의 정보를 필요치 않으므로 사용자 입장에서는 매우 편리할 것이다. 앞으로 경계조건을 효과적으로 만족시키는 문제를 해결하고 효과적인 알고리즘이 개발된다면 실용적으로 유한요소법을 대신할 수 있는 좋은 대안이 될 수 있을 것이라 생각된다.ead up 되었을 때 3~6dB 정도 높게 나타났다.. 5. 마라도 주변해역의 추.동계 방어채낚기어장은 한국연안역으로부터 월동장 내지 산란장으로 남하하는 방어어군이 마라도 주변에 나타나는 연안계수와 외양계수(대마난류) 간에 형성되는 수온.염분전선, 섬주변의 소규모 와, 강한조류 및 지형적 특성(불규칙한 해저지형 및 고립도서)에 의해 이루어지는 왕성한 수평 및 연직 혼합 등과 같은 어장학적 호조건에 의해 마라도 주변에 체류하게 되고, 이들 체류어군은 조류방향에 따라 섬의 조상 측에 농밀군을 형성하는 섬의 조상측 어장이다.향을 주지 않는 것으로 나타났으므로 청소년 각자의 식습관 및 식품 섭취에 대한 관심을 고취시킬 필요가 있다고 생각된다.d with an MR peak in the vicinity of the coercive field. The low-field tunnel-type MR characteristics of thin films deposited on different substrates originates from the behavior of grain boundary properties. 않고 단지 안전 보호측면에서의 연구가 이루어졌을 뿐이었다. 따라서 서열환경하에서 머리부분의 쾌적성을 고려한 다양한 작업

가시광선-근적외선 분광법을 이용한 유성분 측정 기술 개발 (Development of Measuring Technique for Milk Composition by Using Visible-Near Infrared Spectroscopy)

  • 최창현;윤현웅;김용주
    • 한국식품저장유통학회지
    • /
    • 제19권1호
    • /
    • pp.95-103
    • /
    • 2012
  • 본 연구는 원유의 실시간 휴대용품질측정 시스템 개발을 위한 기초 연구로서 원유 시료의 온도에 따른 가시광선-근적외선 스펙트럼을 측정하였으며, 다양한 수학적 전처리방법을 적용하여 유성분 예측모델을 개발하였다. 스펙트럼 측정은 원유 시료 180개에 대해 스펙트럼의 수학적 전처리 방법으로 평활화, 정규화, MSC, 1차 및 2차 미분을 사용하였고 예측모델은 부분최소자승법을 이용하였다. 유성분을 분석한 결과 함량 범위와 평균은 지방이 각각 2.44~6.42%, 4.05%, 단백질은 각각 2.44~4.28%, 3.35%, 무지고형분은 각각 7.85~9.57%, 8.76%로 나타났다. 또한 유당의 함량 범위와 평균은 각각 3.93~5.24%, 4.74%였으며 요소태질소의 경우에는 각각 4.6~15.1 mg/dl, 10.27 mg/dl로 대부분 권장 기준을 만족하였다. 원유 시료의 온도에 따른 스펙트럼은 1,400~2,500 nm에서 큰 차이를 보였으며 온도가 상승함에 따라 흡광도가 높아지는 것을 알 수 있었다. 원유 시료의 온도에 따른 유성분 예측모델을 400~2,500 nm의 영역에서 개발하였으며 예측성능은 지방과 무지고형분의 경우 온도변화와 무관하였다. 단백질과 유당, 요소태질소의 예측성능은 온도가 낮을수록 급격히 감소하여 스펙트럼 측정 시 원유 시료의 온도를 $40^{\circ}C$로 유지하는 것이 필요함을 알 수 있다. $40^{\circ}C$의 원유 스펙트럼에 대해 수학적 전처리를 수행한 결과 평활화를 수행하여 측정 장치 자체의 노이즈를 감소시킬 수 있었고 정규화를 수행하여 기준선을 일치시킬 수 있었다. 또한 MSC를 수행하여 빛의 산란에 의한 영향을 제거하여 스펙트럼간의 차이를 감소시킬 수 있었고 1차 및 2차 미분을 수행한 결과 기준선 일치와 기존 스펙트럼에서 나타나지 않았던 파장영역에 대한 분석이 가능함을 알수 있다. 다중회귀분석의 stepwise 방법을 이용하여 최적 파장영역을 선정하고 유성분 예측모델을 개발한 결과 요소태질소를 제외하고 대부분 근적외선 영역에서 우수한 상관관계를 보여주었다. 지방과 단백질은 원시 스펙트럼의 검증부 결정계수가 각각 0.93, 0.92에서 정규화를 수행한 결과 각각 0.98, 0.92로 원시 스펙트럼의 결과가 우수하여 큰 개선이 없었으나 RPD는 각각 4.10, 3.41에서 5.47, 3.73으로 높아져 정밀도가 향상됨을 알 수 있다. 무지고형분과 유당의 예측모델은 원시 스펙트럼의 경우 각각 0.82, 0.75로 예측모델로 사용하기에는 어려웠으나 각각 평활화와 MSC를 수행하였을 때 검증부 결정계수가 0.90, 0.80으로 크게 개선되어 유성분 예측모델의 신뢰성 향상에 기여할 수 있을 것으로 판단된다. 요소태질소의 경우 가시광선 영역에서 가장 우수한 상관관계를 보여주었으나 검증부 결정계수, 오차, RPD가 각각 0.61, 1.56%, 1.58로 다른 성분에 비해 매우 낮게 나타났다. 이를 개선하기 위해 수학적 전처리를 수행하였으나 크게 개선되지 않았으므로 요소태질소의 신뢰성 있는 모델을 개발하기 위해서는 부분최소자승법 외에 다양한 알고리즘의 적용이 필요할 것으로 판단된다.