References
- 권혁준, & 서종한 (2022). 머신러닝 기반 한국 경찰 자살 생각 위험요인 탐색: 랜덤포레스트를 중심으로. 치안정책연구, 36(4), 7-48.
- 김효창 (2010). 자살: 문화심리학적 관점에서의 조망. 한국심리학회지: 문화 및 사회문제, 16(2), 165-178.
- 이택호, 김선영, 한윤선 (2022). 랜덤포레스트 머신러닝 기법을 활용한 전통적 비행이론 기반 청소년 온, 오프라인 비행 예측요인 연구. 한국심리학회지: 문화 및 사회문제, 28(4), 661-690. https://doi.org/10.20406/KJCS.2022.11.28.4.661
- 정기성 (2018). 인공신경망 분석을 활용한 인천시 주거취약계층의 행복주택 입주의향에 미치는 요인 분석. 주택연구, 26(3), 55-78.
- 홍기혜 (2020). 랜덤포레스트 머신러닝 알고리즘 기반 남․여 청소년의 자살생각 예측 및 분석. 한국사회복지학, 72(3), 157-180.
- Adamou, M., Antoniou, G., Greasidou, E., Lagani, V., Charonyktakis, P., Tsamardinos, I., & Doyle, M. (2018). Toward automatic risk assessment to support suicide prevention. Crisis, 40(4). https://doi.org/10.1027/0227-5910/a000561
- Bae, S. M., Lee, S. A., & Lee, S. H. (2015). Prediction by data mining, of suicide attempts in Korean adolescents: a national study. Neuropsychiatric disease and treatment, 2367-2375.
- Bayramli, I., Castro, V., Barak-Corren, Y., Madsen, E. M., Nock, M. K., Smoller, J. W., & Reis, B. Y. (2022a). Predictive structured-unstructured interactions in EHR models: A case study of suicide prediction. NPJ Digital Medicine, 5(1), 15. https://doi.org/10.1038/s41746-022-00558-0
- Bayramli, I., Castro, V., Barak-Corren, Y., Madsen, E. M., Nock, M. K., Smoller, J. W., & Reis, B. Y. (2022b). Temporally informed random forests for suicide risk prediction. Journal of the American Medical Informatics Association, 29(1), 62-71. https://doi.org/10.1093/jamia/ocab225
- Beck, A. T., Schuyler, D., & Herman, I. (1974). Development of suicidal intent scales. Charles Press Publishers.
- Belsher, B. E., Smolenski, D. J., Pruitt, L. D., Bush, N. E., Beech, E. H., Workman, D. E., ... & Morgan, R. L., Evatt, D. P., Tucker, J., & Skopp, N. A. (2019). Prediction models for suicide attempts and deaths: a systematic review and simulation. JAMA Psychiatry, 76(6), 642-651. 10.1001/jamapsychiatry.2019.0174
- Berkelmans, G., van der Mei, R., Bhulai, S., & Gilissen, R. (2021). Identifying socio-demographic risk factors for suicide using data on an individual level. BMC Public Health, 21(1), 1-8. https://doi.org/10.1186/s12889-021-11743-3
- Bhak, Y., Jeong, H. O., Cho, Y. S., Jeon, S., Cho, J., Gim, J. A., Jeon, Y., Blazyte, A., Park, S. G., Kim, H. M., Shin, E. S., Paik, J. W., Lee, H. W., Kang, W., Kim, A., Kim, Y., Kim, B. C., Ham, B. J., Bhak, J., & Lee, S. (2019). Depression and suicide risk prediction models using blood-derived multi-omics data. Translational Psychiatry, 9(1), 262. https://doi.org/10.1038/s41398-019-0595-2
- Bhat, H. S., & Goldman-Mellor, S. J. (2017). Predicting adolescent suicide attempts with neural networks. arXiv preprint arXiv: 1711.10057. https://doi.org/10.48550/arXiv.1711.10057
- Boudreaux, E. D., Rundensteiner, E., Liu, F., Wang, B., Larkin, C., Agu, E., Ghosh, S., Semeter, J., Simon, G., & Davis-Martin, R. E. (2021). Applying machine learning approaches to suicide prediction using healthcare data: overview and future directions. Frontiers in Psychiatry, 12, 707916. https://doi.org/10.3389/fpsyt.2021.707916
- Bryan, C. J., & Rudd, M. D. (2006). Advances in the assessment of suicide risk. Journal of Clinical Psychology, 62(2), 185-200. https://doi.org/10.1002/jclp.20222
- Burke, T. A., Ammerman, B. A., & Jacobucci, R. (2019). The use of machine learning in the study of suicidal and non-suicidal self-injurious thoughts and behaviors: A systematic review. Journal of Offective Disorders, 245, 869-884. https://doi.org/10.1016/j.jad.2018.11.073
- Byeon, H. (2022). Prediction of adolescent suicidal ideation after the COVID-19 pandemic: A nationwide survey of a representative sample of Korea. Frontiers in Pediatrics, 10, 951439. https://doi.org/10.3389/fped.2022.951439
- Chan, L. F., Maniam, T., & Shamsul, A. S. (2011). Suicide attempts among depressed inpatients with depressive disorder in a Malaysian sample: psychosocial and clinical risk factors. Crisis, 32(5), 283-287. https://doi.org/10.1027/0227-5910/a000088
- Cheng, Q., Li, T. M., Kwok, C. L., Zhu, T., & Yip, P. S. (2017). Assessing suicide risk and emotional distress in Chinese social media: a text mining and machine learning study. Journal of Medical Internet Research, 19(7), e243. 10.2196/jmir.7276
- Choi, S. B., Lee, W., Yoon, J. H., Won, J. U., & Kim, D. W. (2018). Ten-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea. Journal of Affective Disorders, 231, 8-14. https://doi.org/10.1016/j.jad.2018.01.019
- Chou, P. H., Wang, S. C., Wu, C. S., Horikoshi, M., & Ito, M. (2022). A machine-learning model to predict suicide risk in Japan based on national survey data. Frontiers in Psychiatry, 13, 918667. https://doi.org/10.3389/fpsyt.2022.918667
- Cohen, J., Wright-Berryman, J., Rohlfs, L., Trocinski, D., Daniel, L., & Klatt, T. W. (2022). Integration and validation of a natural language processing machine learning suicide risk prediction model based on open-ended interview language in the emergency department. Frontiers in Digital Health, 4, 818705. https://doi.org/10.3389/fdgth.2022.818705
- Cohen, J., Wright-Berryman, J., Rohlfs, L., Wright, D., Campbell, M., Gingrich, D., Santel, D., & Pestian, J. (2020). A feasibility study using a machine learning suicide risk prediction model based on open-ended interview language in adolescent therapy sessions. International Journal of Environmental Research and Public Health, 17(21), 8187. https://doi.org/10.3390/ijerph17218187
- Cohen, S. (1986). Contrasting the Hassles Scale and the Perceived Stress Scale: Who's really measuring appraised stress?. American Psychologist, 41(6), 716-718. https://doi.org/10.1037/0003-066X.41.6.716
- Coley, R. Y., Walker, R. L., Cruz, M., Simon, G. E., & Shortreed, S. M. (2021). Clinical risk prediction models and informative cluster size: Assessing the performance of a suicide risk prediction algorithm. Biometrical Journal, 63(7), 1375-1388. https://doi.org/10.1002/bimj.202000199
- Corke, M., Mullin, K., Angel-Scott, H., Xia, S., & Large, M. (2021). Meta-analysis of the strength of exploratory suicide prediction models; from clinicians to computers. BJPsych open, 7(1), e26. https://doi.org/10.1192/bjo.2020.162
- Czyz, E. K., Koo, H. J., Al-Dajani, N., King, C. A., & Nahum-Shani, I. (2023). Predicting short-term suicidal thoughts in adolescents using machine learning: Developing decision tools to identify daily level risk after hospitalization. Psychological Medicine, 53(7), 2982-2991. https://doi.org/10.1017/S0033291721005006
- Delgado-Gomez, D., Blasco-Fontecilla, H., Sukno, F., Ramos-Plasencia, M. S., & Baca-Garcia, E. (2012). Suicide attempters classification: Toward predictive models of suicidal behavior. Neurocomputing, 92, 3-8. https://doi.org/10.1016/j.neucom.2011.08.033
- Demi̇rbas, H., Celik, S., Ilhan, I. O., & Dogan, Y. B. (2003). An examination of suicide probability in alcoholic in-patients. Alcohol and Alcoholism, 38(1), 67-70. https://doi.org/10.1093/alcalc/agg019
- Edgcomb, J. B., Shaddox, T., Hellemann, G., & Brooks III, J. O. (2021). Predicting suicidal behavior and self-harm after general hospitalization of adults with serious mental illness. Journal of Psychiatric Research, 136, 515-521. https://doi.org/10.1016/j.jpsychires.2020.10.024
- Franklin, J. C., Huang, X., & Bastidas, D. (2019). Virtual reality suicide: Development of a translational approach for studying suicide causes. Behaviour Research and Therapy, 120, 103360. https://doi.org/10.1016/j.brat.2018.12.013
- Franklin, J. C., Ribeiro, J. D., Fox, K. R., Bentley, K. H., Kleiman, E. M., Huang, X., Musacchio, K. M., Jaroszewski, A. C., Chang, B. P., & Nock, M. K. (2017). Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychological Bulletin, 143(2), 187-232. https://doi.org/10.1037/bul0000084
- Fulginiti, A., Segal, A., Wilson, J., Hill, C., Tambe, M., Castro, C., & Rice, E. (2022). Getting to the root of the problem: A decision-tree analysis for suicide risk among young people experiencing homelessness. Journal of the Society for Social Work and Research, 13(2), 327-352. https://doi.org/10.1086/715211
- Gladstone, G. L., Mitchell, P. B., Parker, G., Wilhelm, K., Austin, M. P., & Eyers, K. (2001). Indicators of suicide over 10 years in a specialist mood disorders unit sample. Journal of Clinical Psychiatry, 62(12), 945-951. https://doi.org/10.4088/JCP.v62n1205
- Goldston, D. B., Daniel, S. S., Reboussin, D. M., Reboussin, B. A., Frazier, P. H., & Kelley, A. E. (1999). Suicide attempts among formerly hospitalized adolescents: A prospective naturalistic study of risk during the first 5 years after discharge. Journal of the American Academy of Child & Adolescent Psychiatry, 38(6), 660-671. https://doi.org/10.1097/00004583-199906000-00012
- Gomez, J. M. (2014). Language technologies for suicide prevention in social media. In Proceedings of the Workshop on Natural Language Processing in the 5th Information Systems Research Working Days (JISIC) (pp. 21-29).
- Gradus, J. L., Rosellini, A. J., Horvath-Puho, E., Jiang, T., Street, A. E., Galatzer-Levy, I., Lash, T. L., & Sorensen, H. T. (2021). Predicting sex-specific nonfatal suicide attempt risk using machine learning and data from Danish national registries. American Journal of Epidemiology, 190(12), 2517-2527. https://doi.org/10.1093/aje/kwab112
- Han, K., Ji, L., Chen, C., Hou, B., Ren, D., Yuan, F., Liu, L., Bi, Y., Guo, Z., Wu, N., Feng, M., Su, K., Wang, C., Yang, F., Wu, X., Li, X., Liu, C., Zuo, Z., Zhang, R., ... He, G. (2022). College students' screening early warning factors in identification of suicide risk. Frontiers in Genetics, 13, 977007. https://doi.org/10.3389/fgene.2022.977007
- Haroz, E. E., Walsh, C. G., Goklish, N., Cwik, M. F., O'Keefe, V., & Barlow, A. (2020). Reaching those at highest risk for suicide: development of a model using machine learning methods for use with Native American communities. Suicide and Life-Threatening Behavior, 50(2), 422-436. https://doi.org/10.1111/sltb.12598
- Hawkins, D. M. (2004). The problem of overfitting. Journal of Chemical Information and Computer Sciences, 44(1), 1-12. https://doi.org/10.1021/ci0342472
- Hopkins, D., Rickwood, D. J., Hallford, D. J., & Wats ford, C. (2022). Structured data vs. unstructured data in machine learning prediction models for suicidal behaviors: A systematic review and meta-analysis. Frontiers in Digital Health, 4, 945006. https://doi.org/10.3389/fdgth.2022.945006
- Horvath, A., Dras, M., Lai, C. C., & Boag, S. (2021). Predicting suicidal behavior without asking about suicidal ideation: machine learning and the role of borderline personality disorder criteria. Suicide and Life-Threatening Behavior, 51(3), 455-466. https://doi.org/10.1111/sltb.12719
- Jiang, T., Rosellini, A. J., Horvath-Puho, E., Shiner, B., Street, A. E., Lash, T. L., Sorensen, H. T., & Gradus, J. L. (2021). Using machine learning to predict suicide in the 30 days after discharge from psychiatric hospital in Denmark. The British Journal of Psychiatry, 219(2), 440-447. doi:10.1192/bjp.2021.19
- Joiner, T., Rudd, M. D. (2002). The hopelessness theory of suicidality. In Abramson, L. Y., Alloy, L. B., Hogan, M. E., Whitehouse, W. G., Gibb, B. E., Hankin, B. L., & Cornette, M. M. (Ed.), Suicide Science: Expanding the Boundaries (pp. 17-32).
- Jung, J. S., Park, S. J., Kim, E. Y., Na, K. S., Kim, Y. J., & Kim, K. G. (2019). Prediction models for high risk of suicide in Korean adolescents using machine learning techniques. PLoS one, 14(6), e0217639. https://doi.org/10.1371/journal.pone.0217639
- Kessler, R. C. (2019). Clinical epidemiological research on suicide-related behaviors-where we are and where we need to go. JAMA Psychiatry, 76(8), 777-778. 10.1001/jamapsychiatry.2019.1238
- Kessler, R. C., Bossarte, R. M., Luedtke, A., Zaslavsky, A. M., & Zubizarreta, J. R. (2020). Suicide prediction models: a critical review of recent research with recommendations for the way forward. Molecular Psychiatry, 25(1), 168-179. https://doi.org/10.1038/s41380-019-0531-0
- Kim, K. W., Lim, J. S., Yang, C. M., Jang, S. H., & Lee, S. Y. (2021). Classification of adolescent psychiatric patients at high risk of suicide using the personality assessment inventory by machine learning. Psychiatry Investigation, 18(11), 1137. doi: 10.30773/pi.2021.0191
- Kim, S., & Lee, K. (2022). The effectiveness of predicting suicidal ideation through depressive symptoms and social isolation using machine learning techniques. Journal of Personalized Medicine, 12(4), 516. https://doi.org/10.3390/jpm12040516
- Kim, S., Lee, H. K., & Lee, K. (2021). Detecting suicidal risk using MMPI-2 based on machine learning algorithm. Scientific Reports, 11(1), 15310. https://doi.org/10.1038/s41598-021-94839-5
- Kleespies, P. M., & Dettmer, E. L. (2000). An evidence-based approach to evaluating and managing suicidal emergencies. Journal of Clinical Psychology, 56(9), 1109-1130. https://doi.org/10.1002/1097-4679(200009)56:9<1109::AID-JCLP2>3.0.CO;2-C
- Large, M. M., Ryan, C. J., Carter, G., & Kapur, N. (2017). Can we usefully stratify patients according to suicide risk?. Bmj, 359.
- Levis, M., Westgate, C. L., Gui, J., Watts, B. V., & Shiner, B. (2021). Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models. Psychological Medicine, 51(8), 1382-1391. https://doi.org/10.1017/S0033291720000173
- Lim, J. S., Yang, C. M., Baek, J. W., Lee, S. Y., & Kim, B. N. (2022). Prediction models for suicide attempts among adolescents using machine learning techniques. Clinical Psychopharmacology and Neuroscience, 20(4), 609. doi: 10.9758/cpn.2022.20.4.609
- Lin, G. M., Nagamine, M., Yang, S. N., Tai, Y. M., Lin, C., & Sato, H. (2020). Machine learning based suicide ideation prediction for military personnel. IEEE Journal of Biomedical and Health Informatics, 24(7), 1907-1916. doi: 10.1109/JBHI.2020.2988393
- Linthicum, K. P., Schafer, K. M., & Ribeiro, J. D. (2019). Machine learning in suicide science: Applications and ethics. Behavioral Sciences & the Law, 37(3), 214-222. https://doi.org/10.1002/bsl.2392
- Lu, H., Tang, J., Huang, Z., Zou, Q., Guo, M., Huang, X., & Hu, F. (2020). Development and Value Evaluation of a Simple Prediction Model of Suicidal Behavior in Depressive Disorder. Chinese General Practice, 23(26), 3247. DOI: 10.12114/j.issn.1007-9572.2020.00.430
- Macalli, M., Navarro, M., Orri, M., Tournier, M., Thiebaut, R., Cote, S. M., & Tzourio, C. (2021). A machine learning approach for predicting suicidal thoughts and behaviours among college students. Scientific Reports, 11(1), 11363. https://doi.org/10.1038/s41598-021-90728-z
- Mann, J. J., Currier, D., Stanley, B., Oquendo, M. A., Amsel, L. V., & Ellis, S. P. (2006). Can biological tests assist prediction of suicide in mood disorders?. International Journal of Neuropsychopharmacology, 9(4), 465-474. https://doi.org/10.1017/S1461145705005687
- Mann, J. J., Waternaux, C., Haas, G. L., & Malone, K. M. (1999). Toward a clinical model of suicidal behavior in psychiatric patients. American Journal of Psychiatry, 156(2), 181-189. https://doi.org/10.1176/ajp.156.2.181
- Matykiewicz, P., Duch, W., & Pestian, J. (2009, June). Clustering Semantic Spaces of Suicide Notes and Newsgroups Articles. In Proceedings of the BioNLP 2009 Workshop (pp. 179-184).
- McHugh, C. M., Ho, N., Iorfino, F., Crouse, J. J., Nichles, A., Zmicerevska, N., ... & Hickie, I. B. (2023). Predictive modelling of deliberate self-harm and suicide attempts in young people accessing primary care: a machine learning analysis of a longitudinal study. Social Psychiatry and Psychiatric Epidemiology, 58(6), 893-905. https://doi.org/10.1007/s00127-022-02415-7
- Min, S., Shin, D., Rhee, S. J., Park, C. H. K., Yang, J. H., Song, Y., Kim, M. J., Kim, K., Cho, W. I., Kwon, O. C., Ahn, Y. M., & Lee, H. (2023). Acoustic analysis of speech for screening for suicide risk: machine learning classifiers for between-and within-person evaluation of suicidality. Journal of Medical Internet Research, 25, e45456. doi: 10.2196/45456
- Nordin, N., Zainol, Z., Mohd Noor, M. H., & Lai Fong, C. (2021). A comparative study of machine learning techniques for suicide attempts predictive model. Health Informatics Journal, 27(1), 1460458221989395. https://doi.org/10.1177/14604582219893
- Obeid, J. S., Dahne, J., Christensen, S., Howard, S., Crawford, T., Frey, L. J., Stecker, T., & Bunnell, B. E. (2020). Identifying and predicting intentional self-harm in electronic health record clinical notes: deep learning approach. JMIR Medical Informatics, 8(7), e17784. doi: 10.2196/17784
- Oh, B., Yun, J. Y., Yeo, E. C., Kim, D. H., Kim, J., & Cho, B. J. (2020). Prediction of suicidal ideation among Korean adults using machine learning: a cross-sectional study. Psychiatry Investigation, 17(4), 331. doi: 10.30773/pi.2019.0270
- Oh, J., Yun, K., Hwang, J. H., & Chae, J. H. (2017). Classification of suicide attempts through a machine learning algorithm based on multiple systemic psychiatric scales. Frontiers in Psychiatry, 8, 192. https://doi.org/10.3389/fpsyt.2017.00192
- Park, H., & Lee, K. (2022a). A Machine Learning Approach for Predicting Wage Workers' Suicidal Ideation. Journal of Personalized Medicine, 12(6), 945. https://doi.org/10.3390/jpm12060945
- Park, H., & Lee, K. (2022b). Using Boosted Machine Learning to Predict Suicidal Ideation by Socioeconomic Status among Adolescents. Journal of Personalized Medicine, 12(9), 1357. https://doi.org/10.3390/jpm12091357
- Rabani, S. T., Khan, Q. R., & Khanday, A. M. U. D. (2020). Detection of suicidal ideation on Twitter using machine learning & ensemble approaches. Baghdad Science Journal, 17(4), 1328-1328. https://doi.org/10.21123/bsj.2020.17.4.1328
- Ryu, S., Lee, H., Lee, D. K., Kim, S. W., & Kim, C. E. (2019). Detection of suicide attempters among suicide ideators using machine learning. Psychiatry Investigation, 16(8), 588. doi: 10.30773/pi.2019.06.19.
- Ryu, S., Lee, H., Lee, D. K., & Park, K. (2018). Use of a machine learning algorithm to predict individuals with suicide ideation in the general population. Psychiatry Investigation, 15(11), 1030. doi: 10.30773/pi.2018.08.27
- Sanderson, M., Bulloch, A. G., Wang, J., Williams, K. G., Williamson, T., & Patten, S. B. (2020). Predicting death by suicide following an emergency department visit for parasuicide with administrative health care system data and machine learning. EClinicalMedicine, 20. https://doi.org/10.1016/j.eclinm.2020.100281
- Schafer, K. M., Kennedy, G., Gallyer, A., & Resnik, P. (2021). A direct comparison of theory-driven and machine learning prediction of suicide: A meta-analysis. PloS one, 16(4), e0249833. https://doi.org/10.1371/journal.pone.0249833
- Shen, Y., Zhang, W., Chan, B. S. M., Zhang, Y., Meng, F., Kennon, E. A., Wu, H. E., Luo, X., & Zhang, X. (2020). Detecting risk of suicide attempts among Chinese medical college students using a machine learning algorithm. Journal of Affective Disorders, 273, 18-23. https://doi.org/10.1016/j.jad.2020.04.057
- Shin, D., Kim, K., Lee, S. B., Lee, C., Bae, Y. S., Cho, W. I., ... & Ahn, Y. M. (2022). Detection of depression and suicide risk based on text from clinical interviews using machine learning: possibility of a new objective diagnostic marker. Frontiers in Psychiatry, 13, 801301. https://doi.org/10.3389/fpsyt.2022.801301
- Simundic, A. M. (2009). Measures of diagnostic accuracy: basic definitions. ejifcc, 19(4), 203.
- Skogman, K., Alsen, M., & Ojehagen, A. (2004). Sex differences in risk factors for suicide after attempted suicide: a follow-up study of 1052 suicide attempters. Social Psychiatry and Psychiatric Epidemiology, 39, 113-120. https://doi.org/10.1007/s00127-004-0709-9
- Song, S. I., Hong, H. T., Lee, C., & Lee, S. B. (2022). A machine learning approach for predicting suicidal ideation in post stroke patients. Scientific Reports, 12(1), 15906. https://doi.org/10.1038/s41598-022-19828-8
- Su, C., Aseltine, R., Doshi, R., Chen, K., Rogers, S. C., & Wang, F. (2020). Machine learning for suicide risk prediction in children and adolescents with electronic health records. Translational Psychiatry, 10(1), 413. https://doi.org/10.1038/s41398-020-01100-0
- Su, R., John, J. R., & Lin, P. I. (2023). Machine learning-based prediction for self-harm and suicide attempts in adolescents. Psychiatry Research, 328, 115446. https://doi.org/10.1016/j.psychres.2023.115446
- Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2016). An empirical comparison of model validation techniques for defect prediction models. IEEE Transactions on Software Engineering, 43(1), 1-18. 10.1109/TSE.2016.2584050
- Tsui, F. R., Shi, L., Ruiz, V., Ryan, N. D., Biernesser, C., Iyengar, S., Walsh, C. G., & Brent, D. A. (2021). Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts. JAMIA open, 4(1), ooab011. https://doi.org/10.1093/jamiaopen/ooab011
- Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225-1231. https://doi.org/10.1016/S0895-4356(96)00002-9
- Van Vuuren, C. L., Van Mens, K., De Beurs, D., Lokkerbol, J., Van der Wal, M. F., Cuijpers, P., & Chinapaw, M. J. M. (2021). Comparing machine learning to a rule-based approach for predicting suicidal behavior among adolescents: Results from a longitudinal population-based survey. Journal of Affective Disorders, 295, 1415-1420. https://doi.org/10.1016/j.jad.2021.09.018
- Velupillai, S., Hadlaczky, G., Baca-Garcia, E., Gorrell, G. M., Werbeloff, N., Nguyen, D., Patel, R., Leightley, D., Downs, J., Hotopf, M., & Dutta, R. (2019). Risk assessment tools and data-driven approaches for predicting and preventing suicidal behavior. Frontiers in Psychiatry, 10, 36. https://doi.org/10.3389/fpsyt.2019.00036
- Walsh, C. G., Ribeiro, J. D., & Franklin, J. C. (2017). Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 5(3), 457-469. https://doi.org/10.1177/2167702617691560
- Zheng, S., Zeng, W., Xin, Q., Ye, Y., Xue, X., Li, E., Liu, T., Yan, N., Chen, W., & Yin, H. (2022). Can cognition help predict suicide risk in patients with major depressive disorder? A machine learning study. BMC psychiatry, 22(1), 1-13. https://doi.org/10.1186/s12888-022-04223-4
- Zuromski, K. L., Bernecker, S. L., Gutierrez, P. M., Joiner, T. E., King, A. J., Liu, H., Naifeh, J. A., Nock, M. K., Sampson, N. A., Zaslavsky, A. M., Stein, M. B., Ursano, R. J., & Kessler, R. C. (2019). Assessment of a risk index for suicide attempts among US army soldiers with suicide ideation: analysis of data from the army study to assess risk and resilience in servicemembers (Army STARRS). JAMA network open, 2(3), e190766-e190766. 10.1001/jamanetworkopen.2019.0766