• Title/Summary/Keyword: 환기 시뮬레이션

Search Result 175, Processing Time 0.026 seconds

Fire Modeling and Smoking Control Characteristic Analysis of Electric Room by Using FDS (FDS를 이용한 전기실의 화재모델링 및 연기제어 특성 분석)

  • Choi, Jeong-A;Lee, Min-Gu;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.662-668
    • /
    • 2018
  • Most electric rooms are located in the underground spaces of buildings. When a fire occurs in electrical equipment, the fire expands to cable insulation material, resulting in toxic smoke and combustion products. If the smoke and combustion products quickly move vertically and horizontally, the evacuation of occupants and firefighting activities will be hindered. Therefore, it is necessary to design optimal equipment for smoke control in cases of fires in electric rooms. This study analyzes the characteristics of smoke and combustion products in fires in a cubicle-type switchboard in an electric room using PyroSim, which is based on the program Fire Dynamics Simulator (FDS). The fire modeling consists of four scenarios according to the operation mode of the mechanical ventilation equipment, the amount of air supply and exhaust, and the location of the air supply slot. The analysis shows that the mechanical ventilation equipment improves the smoke density, visibility, carbon monoxide concentration, and temperature characteristics. The visibility and temperature characteristics were improved when the air flow rate and the location of the air supply slot from fire defense regulations were applied.

A numerical study on effects of thermal buoyance force on number of jet fans for smoke control (도로터널 화재시 열부력이 제연용 제트팬 댓수에 미치는 영향에 대한 해석적 연구)

  • Yoo, Ji-Oh;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.301-310
    • /
    • 2013
  • Jet fans are installed in road tunnels in order to maintain critical velocity when fire occurs. Generally the number of jet fans against fire are calculated by considering critical velocity and flow resistance by wall friction, vehicle drag force, thermal buoyance force and natural wind. In domestic case, thermal buoyance force is not considered in estimating the number of jet fans. So, in this study, we investigated the pressure loss due to the thermal buoyance force induced by tunnel air temperature rise and the impact of thermal buoyance force on the number of jet fans by the numerical fire simulation for the tunnel length(500, 750, 1000, 1500, 2000, 3500m) and grade (-1.0, -1.5, -2.0%). Considering the thermal buoyance force, number of jet fans have to be increased. Especially in the case of 100MW of heat release rate, the pressure loss due to thermal buoyance force exceed the maximum pressure loss due to vehicle drag resistance, so it is analyzed that number of 2~11 jet fans are needed additionally than current design criteria. Thus, in case of estimating the number of jet fans, it must be considered of thermal buoyance force induced tunnel air temperature rise by fire.

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (1) Study on Aerodynamic Resistance of Tomato Canopy through Wind Tunnel Experiment - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (1) 풍동실험을 통한 토마토 식물군의 공기저항 연구 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Lee Seung-Kee;Kwon Soon-Hong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 2006
  • A computational fluid dynamics (CFD) numerical model has been developed to effectively study the ventilation efficiency of multi-span greenhouses with internal crops. As the first step of the study, the internal plants of the CFD model had to be designed as a porous media because of the complexity of its physical shapes. In this paper, the results of the wind tunnel tests were introduced to find the aerodynamic resistance of the plant canopy. The Seogun tomato was used for this study which made significant effects on thermal and mass exchanges with the adjacent air as well as internal airflow resistance. With the main factors of wind speed, static pressure, and density of plant canopy, the aerodynamic resistance factor was statically found. It was finally found to be 0.26 which will be used later as an input data of the CFD model. Moreover, the experimental procedure of how to find the aerodynamic resistance of various plants using, wind tunnel was established through this study.

Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump (GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화)

  • Lee, Jin Woo;Shin, Kwang Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • In this paper, we performed the design optimization dual-shell and tube heat exchanger on exhaust waste heat recovery for gas heat pump using CFD and RSM. CFD analysis is useful to design the complex structure such as double shell and tube heat exchanger. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such dual-shell and tube heat exchanger for GHP, the computational time can become overwhelming. CFD is powerful but it takes a lot of time for complex structure. Therefore, the CFD analysis is minimized by the optimization using the RSM method. As a result, the number of baffle and tube are optimized by 6 baffles and 25 tubes for heat transfer and flow friction. And then pressure drop and heat transfer is improved about 12.2%. We confirm the design optimization using CFD and RSM is useful on complex structure of heat exchanger.

Simulation of a Double Effect Double Stage Absorption Heat Pump for Usage of a Low Temperature Waste Heat (저온 폐열 활용을 위한 2중 효용 2단 흡수식 히트펌프 시뮬레이션)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7736-7744
    • /
    • 2015
  • Considering the significant waste of industrial energy, effective use of low temperature waste heat is extremely important. In this study, a heat pump cycle with double effect and double stage was realized, which escalates the hot water temperature from $50^{\circ}C$ to $70^{\circ}C$ using $160^{\circ}C$ high temperature heat source and $17^{\circ}C$ low temperature heat source. The steam generated in the first generator condenses in the first condenser generating steam in the second generator. The steam condenses in the second condenser and is provided to the second evaporator. Part of the water out of the second evaporator is supplied to the first evaporator, which evaporates using low temperature waste heat. The evaporated steam enters the first absorber and the second evaporator. The steam out of the second evaporator is absorbed into the solution at the second absorber. The hot water temperature is raised in the second condenser and in the second absorber. Proper flow rates and UA values, which satisfied temperature lift $20^{\circ}C$ and COP 1.6, were deduced through trior and error. The COP increases as the temperature of the high temperature water increases, hot water temperature decreases and flow rate increases, waste water temperature and flow rate increases, solution circulation rate decreases. On the other hand, the temperature rise of the hot water increases as the temperature of the high temperature water increases, hot water temperature increases and flow rate decreases, waste water temperature and flow rate increases, solution circulation rate increases. In addition, the COP and hot water temperature rise increase as UAs of the heat exchangers increase.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.

A Study on the Development of a Lightning Warning System by the Measurement of Electric Field at the Ground (대지전장측정에 의한 뇌경보시스템 개발에 관한 연구)

  • Kil, Gyung-Suk;Lee, Sung-Keun;Song, Jae-Yong;Kim, Jum-Sik;Kwon, Jang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.250-258
    • /
    • 2001
  • In this study, a lightning warning system (LWS) which can predict a lightning return stroke is developed, and the LWS is based on the measurement of electric field intensity at the ground level. The LWS consist of a rotation-type field mill as an electric field sensor, an impedance changer, a two-stage amplifier, and a microprocessor unit. From the calibration experiment, the frequency bandwidth and the maximum resolution of the LWS are $DC{\sim}200\;[Hz]$ and 73 [V/m], respectively. Also, the LWS can measure the electric field strength caused by a thunderstorm up to 18.7 [kV/m] at the ground. To ensure the sensing ability of the developed LWS in an actual situation, computer simulation using thundercloud models was carried out, and the result showed that the LWS can monitor the movement of thunderclouds within 6 [km] from the observation site.

  • PDF

Development of Local-Exposure Systems for In Vivo Studies at Mobile-Phone Frequency Bands (이동통신 주파수 대역에서의 동물 실험용 국부 노출 장치 개발)

  • Ko Chea-Ok;Park Min-Young;Doh Hyeon-Jeong;Kim Jeong-Lan;Jung Ki-Bum;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.451-460
    • /
    • 2006
  • We have designed local exposure systems for long-time mice experiments in PCS and cellular frequency band(PCS: 1,762.5 MHz, cellular: 848.5 MHz). The fabricated systems are local exposure systems of carousel type, and 40 mice can be exposed at a time. In order not to give extra stress to the mice ender experiment, the systems were fabricated to meet the environmental conditions such as illumination, ventilation, noise etc. SAR measurement was performed using a temperature probe. Measurements at 3 points in the head of mouse cadaver and solid phantom were made, and it has been confirmed that the measurement results are in good agreement with the simulation results in the real exposure environment. The exposure systems are currently used for long-term mice experiments.

Application of a Fuzzy Controller with a Self-Learning Structure (자기 학습 구조를 가진 퍼지 제어기의 응용)

  • 서영노;장진현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1182-1189
    • /
    • 1994
  • In this paper, we evaluate the performance of a fuzzy controller with a self-learning structure. The fuzzy controller is based on a fuzzy logic that approximates and effectively represents the uncertain phenomena of the real world. The fuzzy controller has control of a plant with a fuzzy inference logic. However, it is not easy to decide the membership function of a fuzzy controller and its controlrule. This problem can be solved by designing a self-learning controller that improves its own contropllaw to its goal with a performance table. The fuzzy controller is implemented with a 386PC, an interface board, a D/A converter, a PWM(Pulse Width Modulation) motor drive-circuit, and a sensing circuit, for error and differential of error. Since a Ball and Beam System is used in the experiment, the validity of the fuzzy controller with the self-learning structure can be evaluated through the actual experiment and the computer simulation of the real plant. The self-learning fuzzy controller reduces settling time by just under 10%.

  • PDF

Numerical Simulation on the Effects of Air Staging for Pulverized Coal Combustion in a Tangential-firing Boiler (접선연소식 보일러에서 미분탄 연소 시 공기 배분의 영향에 대한 전산해석연구)

  • Kang, Kieseop;Ryu, Changkook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.548-555
    • /
    • 2017
  • This study investigated the influence of air staging on combustion and NOx emission in a tangential-firing boiler at a 560 MWe capacity. For air staging, the stoichiometric ratio (SR) for the burner zone was varied from 0.995 to 0.94 while the overall value was fixed at 1.2. The temperature and heat flux in the burner zone and upper furnace corresponded to the distribution of SR, while the total boiler efficiency remained similar. The NOx emission at the furnace exit was reduced by up to 20% when the SR in the burner zone decreased to 0.94. However, the amount of unburned carbon and slagging propensity was not noticeably influenced by the changes in the SR of the burner zone. Therefore, it was favorable to lower the SR of the burner zone for reduction of NOx emission.