Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (1) Study on Aerodynamic Resistance of Tomato Canopy through Wind Tunnel Experiment -

공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (1) 풍동실험을 통한 토마토 식물군의 공기저항 연구 -

  • Lee In-Bok (Rural Systems Engineering, Seoul National University) ;
  • Yun Nam-Kyu (Agricultural Structures Engineering, National Institute of Agricultural Engineering) ;
  • Boulard Thierry (National Institute of Agricultural Researches, France) ;
  • Roy Jean Claude (FEMTO-ST, CREST, University of Franche-Comte, France) ;
  • Lee Sung-Hyoun (Agricultural Structures Engineering, National Institute of Agricultural Engineering) ;
  • Kim Gyoeng-Won (Agricultural Structures Engineering, National Institute of Agricultural Engineering) ;
  • Lee Seung-Kee (Div. of Bio-industry Engineering, Kongju National University) ;
  • Kwon Soon-Hong (School of Biosystems Engineering, Pusan National University)
  • 이인복 (서울대학교 농업생명과학대학 지역시스템공학) ;
  • 윤남규 (농촌진흥청 농업공학연구소 시설방제공학연구실) ;
  • ;
  • ;
  • 이성현 (농촌진흥청 농업공학연구소 시설방제공학연구실) ;
  • 김경원 (농촌진흥청 농업공학연구소 시설방제공학연구실) ;
  • 이승기 (공주대학교 생물산업공학부) ;
  • 권순홍 (부산대학교 바이오시스템공학부)
  • Published : 2006.12.30

Abstract

A computational fluid dynamics (CFD) numerical model has been developed to effectively study the ventilation efficiency of multi-span greenhouses with internal crops. As the first step of the study, the internal plants of the CFD model had to be designed as a porous media because of the complexity of its physical shapes. In this paper, the results of the wind tunnel tests were introduced to find the aerodynamic resistance of the plant canopy. The Seogun tomato was used for this study which made significant effects on thermal and mass exchanges with the adjacent air as well as internal airflow resistance. With the main factors of wind speed, static pressure, and density of plant canopy, the aerodynamic resistance factor was statically found. It was finally found to be 0.26 which will be used later as an input data of the CFD model. Moreover, the experimental procedure of how to find the aerodynamic resistance of various plants using, wind tunnel was established through this study.

온실의 환기연구를 위한 CFD 시뮬레이션 모델에 토마토 작물을 설계함에 있어서 우선적으로 작물군의 기하학적 형상 설계 및 이의 공기 항력계수를 찾고자 하였다. 작물군 형상을 간단한 형태의 공기투과성 매체로 설계하고 이의 공기저항의 물리적 특성을 풍동실험을 통하여 구하였다. 토마토 작물군과 작물군 사이에서 측정된 값과 작물군 중앙부에서 측정되어진 값들을 분리하여 계산하여 된 결과 공기저항값인 항력계수 $C_d 값은 각각 0.2551와 0.2621로 나타났다. 최종적으로 이들의 평균값인 0.26을 Fluent CFD 프로그램의 작물군 공기투과성 매체의 x, y, z축의 내부저항값으로 입력되었다. 이 실험결과를 이용하여 전산유체역학 (CFD)을 이용한 시설내 작물군이 존재하는 경우의 온실 환기연구를 효과적으로 수행할 수 있게 되었다. 또한 풍동을 이용한 작물의 공기저항 연구를 위한 실험방법을 개발하여 앞으로도 다양한 작물들을 대상으로 공기유동의 물리적 특성연구를 수행할 수 있게 되었다.

Keywords

References

  1. Lee, In-Bok, K. H. Choi, C. J. Chon, and K. W. Kim. 2003. Wind tunnel technology in agriculture. Summer conference of Korean Society of Wind Engineering, 201-204
  2. Boulard, T. and S. Wang. 2002. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel. Computers and Electronics in Agric. 34:173-190 https://doi.org/10.1016/S0168-1699(01)00186-7
  3. Cook, N. 1997. The designer's guide to wind loading of building structures part 2. Butterworths Co. Croydon, UK
  4. Fluent. 2006. The manual of computational fluid dynanlics (CFD), Version 6.3. Lebanon, N.H.: Fluent, Inc
  5. Kacira, M., S. Sase, and L. Okushima. 2004. Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation. Transactions of ASAE, 47(6):2059-2067 https://doi.org/10.13031/2013.17803
  6. Lee, In-Bok, T. H. Short, S. Sase, and S. Lee. 2000a. Evaluation of computational fluid dynamics of aerodynamics in naturally ventilated multi-span greenhouses. 1(2):73-80
  7. Lee, In-Bok, T. H. Short, S. Sase, L. Okushima, and G. Y. Qiu. 2000b. Evaluation of structural characteristics of naturally ventilated multi-span greenhouses using computer simulation. Japanese Agricultural Research Quarterly, 34(4):245-255
  8. Lee, In-Bok and T. H. Short. 2000. Two-dimensional numerical simulation of natural ventilation in a multispan greenhouse. Transactions of the American Society of Agricultural Engineers, 43(3):745-753 https://doi.org/10.13031/2013.2758
  9. Lee, In-Bok and T. H. Short. 2001. Verification of computational fluid dynamics temperature simulations in a full scale naturally ventilated greenhouse. Transactions of the American Society of Agricultural Engineers, 44(1):119-127 https://doi.org/10.13031/2013.2303
  10. Lee, In-Bok, S. Lee, G. Kim, J. Sung, S. Sung, and Y. Yoon. 2005. PIV verification of greenhouse ventilation air flows to evaluate CFD accuracy. Transactions of ASAE 48(5):2277-2288 https://doi.org/10.13031/2013.20091
  11. Wilson, J.D. 1985. Numerical studies of flow through a windbreak. Journal of Wind Engineering, 21:119-154