DOI QR코드

DOI QR Code

Simulation of a Double Effect Double Stage Absorption Heat Pump for Usage of a Low Temperature Waste Heat

저온 폐열 활용을 위한 2중 효용 2단 흡수식 히트펌프 시뮬레이션

  • Kim, Nae-Hyun (Division of Mechanical System Engineering, Incheon National University)
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2015.06.17
  • Accepted : 2015.11.06
  • Published : 2015.11.30

Abstract

Considering the significant waste of industrial energy, effective use of low temperature waste heat is extremely important. In this study, a heat pump cycle with double effect and double stage was realized, which escalates the hot water temperature from $50^{\circ}C$ to $70^{\circ}C$ using $160^{\circ}C$ high temperature heat source and $17^{\circ}C$ low temperature heat source. The steam generated in the first generator condenses in the first condenser generating steam in the second generator. The steam condenses in the second condenser and is provided to the second evaporator. Part of the water out of the second evaporator is supplied to the first evaporator, which evaporates using low temperature waste heat. The evaporated steam enters the first absorber and the second evaporator. The steam out of the second evaporator is absorbed into the solution at the second absorber. The hot water temperature is raised in the second condenser and in the second absorber. Proper flow rates and UA values, which satisfied temperature lift $20^{\circ}C$ and COP 1.6, were deduced through trior and error. The COP increases as the temperature of the high temperature water increases, hot water temperature decreases and flow rate increases, waste water temperature and flow rate increases, solution circulation rate decreases. On the other hand, the temperature rise of the hot water increases as the temperature of the high temperature water increases, hot water temperature increases and flow rate decreases, waste water temperature and flow rate increases, solution circulation rate increases. In addition, the COP and hot water temperature rise increase as UAs of the heat exchangers increase.

막대한 산업용 에너지가 폐열로 버려지는 상황에서 폐열, 특히 저온 폐열의 효과적인 이용은 매우 중요하다. 본 연구에서는 $160^{\circ}C$의 고온 열원과 $17^{\circ}C$ 저온 하수열을 사용하여 $50^{\circ}C$의 온수를 $70^{\circ}C$로 승온시키며 성적계수는 1.6을 만족하는 2중 효용 2단 흡수식 히트펌프 사이클을 고안하였다. 제 1 재생기에서 증발한 냉매 증기는 제 1 응축기에서 응축하면서 제 2 재생기에서 다시 냉매를 발생시킨다. 이 냉매는 제 2 응축기를 거쳐 제 2 증발기에 모아진다. 이 냉매의 일부는 제 1 증발기로 이동하여 저온 열원을 받아들이고 제 1 흡수기를 거쳐 제 2 증발기에 공급된다. 제 2 증발기를 나온 냉매는 제 2 흡수기에서 용액에 흡수된다. 이 때 온수의 온도는 제 2 응축기와 제 2 흡수기에서 승온된다. 시행착오를 통하여 승온 $20^{\circ}C$, 성적계수 1.6을 만족시키는 유량과 열교환기의 UA 값을 도출하였다. 성적계수는 고온수의 온도가 증가할수록, 온수의 온도가 감소하고 유량이 증가할수록, 폐온수의 온도와 유량이 증가할수록, 용액 순환량이 감소할수록 증가한다. 반면 온수의 승온온도는 고온수의 온도가 증가할수록, 온수의 온도가 증가하고 유량이 감소할수록, 폐온수의 온도와 유량이 증가할수록, 용액 순환량이 증가할수록 증가한다. 또한, 열교환기의 UA 값이 증가할수록 성적계수 및 온수 승온 온도도 증가한다.

Keywords

References

  1. Park. I. W., Park, J. T. and Yoo, S. Y., "An investigation on the domestic industrial waste heat", Korean J. Air-Conditioning Refrigeration Engineering, Vol. 14, No. 10, pp. 811-816, 2002.
  2. Park, Y. S., "Technology trends on the recovery of waste heat and unused energy using a heat pump", Ministry of Science of Technology, 2011.
  3. Ma, X., Chen, J., Li, S., Sha, Q., Liang, A., Li, W., Zhang, J., Zheng, G. and Feng, Z., "Application of absorption heat transfer to recover waste heat from a synthetic rubber plant", Applied Thermal Engineering Vol. 23, pp. 797-806, 2003. DOI: http://dx.doi.org/10.1016/S1359-4311(03)00011-5
  4. Perez-Blanco, H. and Grossman, G., "Conceptual design and performance analysis of absorption heat pumps for waste heat utilization", ASHRAE Trans., Vol. 88, Part 1, pp. 451-466, 1982. DOI: http://dx.doi.org/10.1016/0140-7007(82)90058-5
  5. Grossman, G., "Adiabatic absorption and desorption for improvement of temperature-boosting absorption heat pumps", ASHRAE Trans., Vol. 88, Part 2, pp. 359-367, 1982.
  6. Grossman, G., "Multistage absorption heat transformers for industrial applications", ASHRAE Trans., Vol. 91, Part 2, pp. 2047-2061, 1985.
  7. Grossman, G. and Childs, K. W., "Computer simulation of a lithium bromide-water absorption heat pump for temperature boosting", ASHRAE Trans., Vol. 89, Part 1, pp. 240-250, 1983.
  8. Grossman, G. and Michelson, E., 1"A modular computer simulation of absorption systems" ASHRAE Trans., Vol. 91, Part 2B pp. 1808-1827, 1985.
  9. Youn, C. H., "Development of a absorption heat pump for recovery of low temperature waste heat", KIMM, 1989.
  10. Kang, S. W., Kang, B. H., Jeong, S. Y. and Lee, C. S., "Computer simulation of a absorption heat pump of the first kind for low temperature waste heat recovery", Korean J. Air-Conditioning Refrigeration Engineering, Vol. 8, No. 2, pp. 187-197, 1996.
  11. Lee, Y. H., Shin, H. J., Youn, H. C. and Park H. K., "A study on the heating and cooling system using sewage heat", J. Korean Solar Energy Society, Vol. 27, No. 4, pp. 19-26, 2007.
  12. Greiter, I., Schweigler, C., and Alefeld, G., "A 500kW absorption heat pump for heating at two temperature levels : Experience of the first heating season", Proc. Int. Absorption Heat Pump Conference, AES-Vol. 31, pp. 85-92, New Orleans, USA, 1994.
  13. World Energy Co., internal performance data, 2015.
  14. Shim, Y. S., A Study on the Absorption Heat Pump for Waste Heat Recovery, Ph. D. Thesis, Incheon National University, 2014.
  15. Harold, K. E., Radermacher, R. and S. A. Klein, Absorption Chillers and Heat Pumps, 1st ed., CRC Press, 1996.
  16. EES, F-Charts Software, www.fchart.com, 2015.