• Title/Summary/Keyword: 환경챔버

Search Result 430, Processing Time 0.033 seconds

Growth and Flower Bud Induction in Strawberry 'Sulhyang' Runner Plant as Affected by Exogenous Application of Benzyladenine, Gibberellic Acid, and Salicylic Acid (벤질아데닌, 지베렐린산, 살리실산이 '설향' 딸기묘의 생장과 화아 유도에 미치는 영향)

  • Thi, Luc The;Nguyen, Quan Hoang;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2019
  • Strawberry ($Fragaria{\times}ananassa$) is one of the most important and popular fruit crops in the world, and 'Sulhyang' is one of the principal cultivars cultivated in the Republic of Korea for the domestic market. The growth and flower induction in strawberry is the process which influences directly on fruit bearing and yield of this crop. In this study, effect of benzyladenine (BA), gibberellic acid ($GA_3$), and salicylic acid (SA) on growth and flower bud induction in strawberry 'Sulhyang' was investigated. The 3-week-old runner plants, grown in 21-cell propagation trays, were potted and cultivated in growth chambers with $25^{\circ}C/15^{\circ}C$ (day/night) temperatures, 70% relative humidity (RH), and light intensity of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density (PPFD) provided by white light emitting diodes (LEDs). The runner plants were treated with one of three concentrations, 0 (control), 100, and $200mg{\cdot}L^{-1}$ of BA, $GA_3$, or SA solution. The chemicals were sprayed two times on leaves of runner plants at an interval of two weeks. After 9 weeks the results showed that the application of all chemicals caused reduction of root length and chlorophyll (SPAD) content as compared to the control. The lowest chlorophyll (SPAD) content was recorded in plants treated with $GA_3$. However, the treatment of $200mg{\cdot}L^{-1}$ $GA_3$ promoted leaf area, leaf fresh weight, and plant fresh weight. The greatest flower induction (85%) and number of inflorescences (4.3 inflorescences per plant) were observed in the treatment of $200mg{\cdot}L^{-1}\;SA$, followed by $100mg{\cdot}L^{-1}\;SA$. Overall, results suggest that foliar application of $GA_3$ solution could accelerate plant growth, while foliar application of SA solution could induce hastened flowering. Further studies may be needed to find out the relationship between $GA_3$ and SA solutions treated in a combination, and the molecular mechanism involved in those responses observed.

Changes in Growth and Bioactive Compounds of Lettuce According to CO2 Tablet Treatment in the Nutrient Solution of Hydroponic System (수경재배 양액 내 탄산정 처리에 의한 상추의 생육 및 생리활성물질 함량 변화)

  • Bok, Gwonjeong;Noh, Seungwon;Kim, Youngkuk;Nam, Changsu;Jin, Chaelin;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.85-93
    • /
    • 2021
  • In hydroponic cultivation, in order to investigate the change of lettuce growth and physiologically active substances through CO2 tablet treatment in nutrient solution, we used a solid carbonated tablets commercially available in the Netherlands. The experiment consisted of 0.5-fold, 1-fold, and 2-fold treatment groups with no treatment as a control. As a result, the atmospheric CO2 concentration in the chamber after CO2 tablet treatment showed the highest value at 472.2 µL·L-1 in the 2-fold treatment zone immediately after treatment, and the pH in the nutrient solution decreased the most to pH 6.03 in the 2-fold treatment zone. After that, over time, the CO2 concentration and pH recovered to the level before treatment. Leaf width and leaf area of lettuce showed the highest values of 17.1cm and 1067.14 ㎠ when treated 2-fold with CO2 tablet, while fresh weight and dry weight of the above-ground part were highest at 63.87 g and 3.08 g in 0.5-fold treatment. The root length of lettuce was the longest (28.4 cm) in the control, but there was no significant difference in the fresh weight and the dry weight among the treatments. Apparently, it was observed that the root length of the lettuce was shortened by CO2 tablet treatment and a lot of side roots occurred. In addition, there was a growth disorder in which the roots turned black, but it was found that there was no negative effect on the growth of the above-ground part. As a result of analyzing the bioactive compounds of lettuce by CO2 tablet treatment, chlorogenic acid and quercetin were detected. As a result of quantitative analysis, chlorogenic acid increased by 249% compared to the control in 1-fold treatment, but quercetin decreased by 37%. As a result of comparing the DPPH radical scavenging ability showing antioxidant activity, the control and 0.5-fold treatment showed significantly higher values than the 1-fold and 2-fold treatments. This suggests that carbonated water treatment is effective in increasing the growth and bioactive compounds of hydroponic lettuce.

Effect of Final Irrigation Timing before Simulated Dark Shipping on Post-shipping Performance of Potted Phalaenopsis Sogo Yukidian 'V3' (팔레놉시스 분화의 모의수송 전 최종 관수 시기가 수송 후 생육에 미치는 영향)

  • Jeong, Ju Hui;Jeon, Jeong Bin;Kim, Sang Yoon;Oh, Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.65-71
    • /
    • 2021
  • This study was carried out to investigate the effect of the final irrigation timing (FIT) before packaging for long-term transportation on growth, flowering, and crop quality of Phalaenopsis after simulated dark shipping (SDS). Phalaenopsis Sogo Yukidian 'V3' plants grown in 11 cm-diameter plastic pots filled with potting media (sphagnum moss + bark or only sphagnum moss) were packaged in paper boxes for export at 3.5, 7, 10 days (FIT 3.5, 7,10; Experiment 1) and 4, 6, 8, 10 days (FIT 4, 6, 8, 10; Experiment 2) after the final irrigation and then stored in a growth chamber at 20 ± 1℃ and 70 ± 3% RH created for SDS. After 4 weeks, the plants were taken out and grown in a greenhouse at 23 ± 3℃ and 70 ± 5% RH, and crop characteristics were measured during cultivation. In Experiment 1, the survival rate of FIT 3.5 plants was lower than that of FIT 7 and FIT 10. There was no difference between treatments in days to first flower, the number of florets, and the elongation rate of flower stalks. In Experiment 2, the percentage of rotted leaves was lowest in FIT 6 when before forcing and at 12 weeks after forcing, and that of FIT 8 was similar to FIT 6 when before forcing, but slightly increased after 12 weeks. The percentage of rotted leaves of FIT 10 was highest and that of FIT 4 was also high. There was little difference in flowering characteristics among treatments. In conclusion, the FIT before packaging for long-term (4 weeks) transportation of potted Phalaenopsis 'V3' affected the leaf rot rather than the post-shipping growth and flowering. And it was considered appropriate to set the volumetric water content of the potting media just before packaging to about 30%.

Effect of Pre-harvest Irradiation of UV-A and UV-B LED in Ginsenosides Content of Ginseng Sprouts (새싹 인삼의 수확 전 UV-A 및 -B LED의 조사에 의한 진세노사이드의 영향)

  • Jang, Seong-Nam;Lee, Ga-Oun;Sim, Han-Sol;Bae, Jin-Su;Lee, Ae-Ryeon;Cho, Du-Yong;Cho, Kye-Man;Son, Ki-Ho
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.28-34
    • /
    • 2022
  • This study was conducted to determine the changes in ginsenosides content according to additional UV-A, and UV-B LED irradiation before harvesting the ginseng sprouts. One-year-old ginseng seedlings (n=100) were transplanted in a tray containing a ginseng medium. The ginseng sprouts were grown for 37 days at a temperature of 20℃ (24h), a humidity of 70%, and an average light intensity of 80 µmol·m-2·s-1 (photoperiod; 24h) in a container-type plant factory. Ginseng sprouts were then transferred to a custom chamber equipped with UV-A (370 nm; 12.90 W·m-2) and UV-B (300 nm; 0.31 W·m-2) LEDs and treated for 3 days. Growth parameters and ginsenoside contents in shoot and root were conducted by harvesting on days 0 (control), 1, 2, and 3 of UV treatments, respectively. The growth parameters showed non-significant differences between the control and the UV treatments (wavelengths or the number of days). Ginsenoside contents of the shoot was highly improved by 186% in UV-A treatment compared to the control in 3 days of the treatment time. The ginsenoside contents of the roots was more improved in UV-A 1-day treatment and UV-B 3-day treatment, compared to the control by 171% and 160%, respectively. As a result of this experiment, it is thought that UV LED irradiation before harvesting can produce sprout ginseng with high ginsenoside contents in a plant factory.

Effect of Dietary Supplementation of Garlic and May Flower Powder on CO2 and CH4 Emission by Hanwoo Cow (산사 및 마늘 분말이 한우암소의 이산화탄소 및 메탄 발생량에 미치는 영향)

  • Kim, Du Ri;Ha, Jae Jung;Song, Young Han
    • Journal of Animal Science and Technology
    • /
    • v.54 no.5
    • /
    • pp.363-368
    • /
    • 2012
  • This study was conducted to investigate the effects of dietary garlic and may flower powder on $CO_2$ and $CH_4$ emission by Hanwoo cows fed TMR (Total Mixed Ration) based diet. Animals were housed in a hood-type respiration chamber and the environmental temperature was maintained at $20^{\circ}C$. Gases were measured for 24 hours using the multi-detector instrument gas monitoring system (Mamos-300, Australia). The treatments composed of groups with no intake of garlic and may flower powder (Control), with intake of garlic at 0.5% of DM (T1), with intake of garlic at 1% of DM (T2), with intake of may flower at 0.5% of DM (T3), with intake of may flower at 1% of DM (T4), with intake of garlic and may flower at 0.5% of DM (T5) and with intake of garlic and may flower at 1% of DM (T6). The results indicated that $CO_2$ emission in T3 was 53% lower than that of control (p<0.05), and $CH_4$ emissions was 57% lower than control (p<0.05). Also, the hourly pattern of $CO_2$ and $CH_4$ emissions in T3 showed the least difference with all treatments. Gas emissions pattern peaked after 1 hour of feeding and this gap was wider in the afternoon than in the morning hours.

Impact of Elevated Carbon Dioxide, Temperature, and Drought on Potato Canopy Architecture and Change in Macronutrients (상승된 이산화탄소와 온도 그리고 한발 영향에 따른 감자의 군락 형태와 무기영양 변화)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.164-173
    • /
    • 2018
  • Elevated atmospheric carbon dioxide concentration ($CO_2$) is a major component of climate change, and this increase can be expected to continue into the crop and food security in the future. In this study, Soil-Plant-Atmosphere-Research (SPAR) chambers were used to examine the effect of elevated $CO_2$, temperature, and drought on the canopy architecture and concentration of macronutrients in potatoes (Solanum tuberosum L.). Drought stress treatments were imposed on potato plants 40 days after emergence. Under AT+2.8C700 (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$), at maximum leaf area, elevated $CO_2$, and no drought stress, a significant increase was observed in both the aboveground biomass and tuber, and for the developmental stage. Even though $CO_2$ and temperature had increased, AT+2.8C700DS (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$ under drought stress) under drought stress showed that the leaf area index (LAI) and dry weight were reduced by drought stress. At maturity, potatoes grown under $CO_2$ enrichment and no drought stress exhibited significantly lower concentrations of N and P in their leaves, and of N, P, and K in tubers under AT+2.8C700. In contrast, elevated $CO_2$ and drought stress tended to increase the tuber Mg concentration under AT+2.8C700DS. Plants grown in AT+2.8C700 had lower protein contents than plants grown under ATC450 (30-year average temperature at $400{\mu}mol\;mol^{-1}$ of $CO_2$). However, plants grown under AT+2.8C700 showed higher tuber bulking than those grown under AT+2.8C700DS. These findings suggest that the increase in $CO_2$ concentrations and drought events in the future are likely to decrease the macronutrients and protein concentrations in potatoes, which are important for the human diet.

Impact of Elevated Temperature and CO2 on Growth and Fruit Quality of Pepper (Capsicum annuum L.) (온도 및 CO2 상승이 고추의 생육 및 과실품질에 미치는 영향)

  • Song, Eun Young;Moon, Kyung Hwan;Son, In Chang;Wi, Seung Hwan;Kim, Chun Hwan;Lim, Chan Kyu;Oh, Soonja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.179-187
    • /
    • 2016
  • This study was conducted to determine the impact of elevated temperature and $CO_2$ concentration based on climate change scenario on growth and fruit quality of pepper (Capsicum annuum L. cv. Muhanjilju) with SPAR (Soil Plant Atmosphere Research) chamber. The intraday temperatures of climate normal years fixed by $20.8^{\circ}C$ during the growing season (May 1~October 30) of climatic normal years (1971~2000) in Andong region. There were treated with 4 groups such like a control group (ambient temperature and 400ppm $CO_2$), an elevated $CO_2$ group (ambient temperature and 800ppm $CO_2$), an elevated temperature group (ambient temperature+$6^{\circ}C$ and 400ppm $CO_2$) and an elevated temperature/$CO_2$ group (ambient temperature+$6^{\circ}C$ and 800ppm $CO_2$). Compared with the control, plant height, branch number and leaf number increased under the elevated temperature and elevated temperature/$CO_2$ group. However, leaf area and chlorophyll content showed a tendency of decreasing in the elevated temperature group and elevated temperature/$CO_2$ group. The number of flower and bud were decreased in the elevated temperature and elevated temperature/$CO_2$ group (mean temperature at $26.8^{\circ}C$) during the growth period. The total number and the weight of fruits were decreased in the elevated temperature group and elevated temperature/$CO_2$ group more than the control group. While the weight, length and diameter of fruit decreased more than those of control as the temperature and $CO_2$ concentration increased gradually. This result suggests that the fruit yield could be decreased under the elevated temperature/$CO_2$ ($6^{\circ}C$ higher than atmospheric temperature/2-fold higher than atmospheric $CO_2$ concentration), whereas the percentage of ripen fruits after 100 days of planting was increased, and showed earlier harvest time than the control.

Effects of High Temperature on Soybean Physiology, Protein and Oil Content, and Yield (콩에 있어서 온도 상승이 생물 계절, 수량구성요소, 단백질 및 지방함량 영향 평가)

  • Lee, Yun-Ho;Sang, Wan-Gyu;Cho, Jung-Il;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • A recent assessment by the Intergovernmental Panel on Climate Change projected that the global average surface temperature will increase by a value 1.5℃ from 2030 to 2052. In this study, we used a temperature gradient chamber that mimicked field conditions to evaluate the effect of increased air temperature on phenology, yield components, protein content, and oil content, to assess soybean growth. In 2017 and 2018, 'Deawonkong', 'Pungsannamulkong', and 'Deapungkong' cultivars were grown in three temperature gradient chambers. Four temperature treatment groups were established by dividing the rows along temperature regimes: ambient temperature + 1℃ (aT+1), ambient temperature + 2℃ (aT+2), ambient temperature + 3℃ (aT+3), ambient temperature + 4℃ (aT+4). Year, cultivar, and temperature treatments significantly affected yield components and seed yield. In 2017, the flowering stage of 'Deawon' and 'Pungsannamul' cultivars in the aT+4 group was delayed compared to the flowering stage of those in the aT+1 group. In 2018, the flowering stage of 'Deawon' and 'Pungsannamul' was delayed at all temperature gradients, owing to high temperature stress, whereas 'Deapung' was regularly flowering in 2017 and 2018. The duration of the grain filling period was six days shorter in 2018 than in 2017 because of high temperature stress. The total number of pods per ㎡ for 'Deawon' and 'Pungsannamul' was 48.8 and 41.5% lower in 2018 than in 2017, respectively, whereas 'Deapung' increased by 6.3%. The 100-seed weight of 'Deawon' and 'Deapung' was 29.2 and 32.1% lower, respectively. However, 'Pungsannamul' decreased by 14.7%. The protein and oil content was lower during the grain filling period in 2018 than in the same period in 2017 because of high temperature stress. In contrast, the oil content in 'Deapung' was higher in 2018 than in 2017. Our results showed that increased temperature during the grain filling period was significantly and negatively correlated with pod number, 100-seed weight, protein content, and oil content.

The Effects of Increased Temperature on Seed Nutrition, Protein, and Oil Contents of Soybean [Glycine max (L.)] (온도 상승에 따른 콩 종실의 무기영양과 단백질 및 지방 함량 평가)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.331-337
    • /
    • 2018
  • The content of nutrients, proteins, and oils of crop seeds is affected by global climate change due to the increase in temperature. Information regarding the effects of increased temperature on soybean seed nutrition is limited despite its vital role in seed quality and food security. The objective of this study was to determine the effect of increasing temperature on seed nutrient, protein, and oil content in two soybean [Glycine max (L.) Merr] cultivars (Daewonkong and Pungsannamulkong during the reproductive period in a temperature-gradient chamber. Four temperature treatments, Ta (near ambient temperature), $Ta+1^{\circ}C$ (ambient temperature+$1^{\circ}C$), $Ta+2^{\circ}C$ (ambient temperature+$2^{\circ}C$), $Ta+3^{\circ}C$ (ambient temperature+$3^{\circ}C$), and $Ta+4^{\circ}C$ (ambient temperature+$4^{\circ}C$), were established by dividing the rows along the temperature gradient. At maturity, increased temperature did not significantly affect the concentration of P, K, Ca, and Mg. The protein and oil content was significantly correlated with temperature. At maturity, the protein content of DWK and PSNK was reduced at $Ta+4^{\circ}C$. The oil content was the highest at $Ta+4^{\circ}C$ in DWK, whereas it decreased in PSNK at $Ta+4^{\circ}C$. Consequently, the biochemical composition of soybean seeds changed with the increase in temperature. These results illustrate the effects of temperature on soybean seed nutrient, protein, and oil content, which can help improve soybean quality at different temperatures. Thus, the biochemical composition of crop seeds can be changed in accordance with nutritional requirements for the benefit of human health in the future.

Effect of Growth Temperature and MA Storage on Quality and Storability of Red Romaine Baby Leaves (생육온도와 MA저장이 적로메인 상추 어린잎의 품질과 저장성에 미치는 영향)

  • Choi, Dam Hee;Lee, Joo Hwan;Choi, In-Lee;Kang, Ho-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.187-192
    • /
    • 2021
  • This study was conducted to compare the quality of baby leaves grown under several temperature conditions and the storage properties of MA storage for romaine lettuce. It was grown for 5 weeks under an artificial light source (200 µmol·m-2·s-1) in a chamber at 21℃, 28℃, and 35℃. The growth and quality of red romaine lettuce that grown in different temperatures were investigated at the end of cultivation, and the oxygen, carbon dioxide, and ethylene concentrations in the 20,000 cc OTR film and perforated film packed with lettuces were measured for 36 and 12 days, respectively. The red romaine lettuce baby leaf was examined for color, chlorophyll, and visual quality at the end of storage. The maximum quantum yield of baby leaf grown in different temperatures at 7days before the harvest was higher at 21℃ and 28℃ growth temperature treatments. On harvest day, the leaf length measured was longest at 28℃, and the leaf width was wider at 21℃ and 28℃, and the number of leaves was similar to 5-6 at all cultivation temperatures. Leaf weight, root weight, and dry weight were found to be higher at 21℃, and tended to decrease as the cultivation temperature increased. The concentration of ethylene in the film of the MA storage treatments was maintained at 1~2 µL·L-1 until the end of storage in all treatments regardless of the cultivation temperature. Oxygen concentration in the MA treatment used 20,000 OTR film was maintained at around 19.5%, and carbon dioxide concentration around 1% that was satisfied the CA conditions. Both Hunter a* and b* values were generally higher in the MA storage treatment at the end of storage day. The chlorophyll content was decreased as the cultivation temperature increased, and was lower in the MA storage treatment than in the perforated film treatment. Visual quality was 3 points or higher in the MA storage treatment at 21℃ growth treatment, and it was maintained marketability. As the above results, the growth of baby leaves of romaine lettuce was the best at 21℃ treatment, and the lower the cultivation temperature, the longer the shelf life. And it was possible to extend the shelf life by 3 times by showing excellent visual quality at the MA storage treatment that satisfies the carbon dioxide concentration of CA condition until the end of storage day.