DOI QR코드

DOI QR Code

Impact of Elevated Temperature and CO2 on Growth and Fruit Quality of Pepper (Capsicum annuum L.)

온도 및 CO2 상승이 고추의 생육 및 과실품질에 미치는 영향

  • Song, Eun Young (National Institute of Horticultural & Herbal Science, RDA) ;
  • Moon, Kyung Hwan (National Institute of Horticultural & Herbal Science, RDA) ;
  • Son, In Chang (National Institute of Horticultural & Herbal Science, RDA) ;
  • Wi, Seung Hwan (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Chun Hwan (National Institute of Horticultural & Herbal Science, RDA) ;
  • Lim, Chan Kyu (National Institute of Horticultural & Herbal Science, RDA) ;
  • Oh, Soonja (National Institute of Horticultural & Herbal Science, RDA)
  • 송은영 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 문경환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 손인창 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 위승환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 김천환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 임찬규 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소)
  • Received : 2016.08.18
  • Accepted : 2016.10.10
  • Published : 2016.12.30

Abstract

This study was conducted to determine the impact of elevated temperature and $CO_2$ concentration based on climate change scenario on growth and fruit quality of pepper (Capsicum annuum L. cv. Muhanjilju) with SPAR (Soil Plant Atmosphere Research) chamber. The intraday temperatures of climate normal years fixed by $20.8^{\circ}C$ during the growing season (May 1~October 30) of climatic normal years (1971~2000) in Andong region. There were treated with 4 groups such like a control group (ambient temperature and 400ppm $CO_2$), an elevated $CO_2$ group (ambient temperature and 800ppm $CO_2$), an elevated temperature group (ambient temperature+$6^{\circ}C$ and 400ppm $CO_2$) and an elevated temperature/$CO_2$ group (ambient temperature+$6^{\circ}C$ and 800ppm $CO_2$). Compared with the control, plant height, branch number and leaf number increased under the elevated temperature and elevated temperature/$CO_2$ group. However, leaf area and chlorophyll content showed a tendency of decreasing in the elevated temperature group and elevated temperature/$CO_2$ group. The number of flower and bud were decreased in the elevated temperature and elevated temperature/$CO_2$ group (mean temperature at $26.8^{\circ}C$) during the growth period. The total number and the weight of fruits were decreased in the elevated temperature group and elevated temperature/$CO_2$ group more than the control group. While the weight, length and diameter of fruit decreased more than those of control as the temperature and $CO_2$ concentration increased gradually. This result suggests that the fruit yield could be decreased under the elevated temperature/$CO_2$ ($6^{\circ}C$ higher than atmospheric temperature/2-fold higher than atmospheric $CO_2$ concentration), whereas the percentage of ripen fruits after 100 days of planting was increased, and showed earlier harvest time than the control.

본 연구는 미래 기후변화 시나리오에 근거하여 예측되는 온도 및 이산화탄소 농도 상승조건에서 노지채소인 '무한질주' 고추의 생육 및 과실품질에 미치는 영향을 구명하기 위해 SPAR (Soil Plant Atmosphere Research) 챔버에서 수행하였다. 대조구인 대기온도는 노지고추 주산지인 안동지역의 평년(1971~2000; 30년) 5~10월의 생육기 평균기온($20.8^{\circ}C$)을 기준으로 설정하였다. 처리구는 대조구(대기온도, 400ppm $CO_2$), 이산화탄소 상승구(대기온도, 800ppm $CO_2$), 온도 상승구(대기온도+$6^{\circ}C$, 400ppm $CO_2$), 이산화탄소+온도 상승구(대기온도+$6^{\circ}C$, 800ppm $CO_2$) 등 4수준으로 설정하였다. 대조구보다 고온 및 상승 이산화탄소 농도 조건에서 재배하였을 때 초장, 분지수, 엽수 등이 증가하였으나, 엽면적과 SPAD값은 급격히 감소하였다. 개화 및 꽃봉오리수도 온도 및 이산화탄소 농도가 증가할수록 급격히 감소되었다. 또한, 개체당 총 착과수와 총 착과중도 대조구에 비해 감소하였는데 과실무게도 약간 적었고 과실 길이와 과실 두께도 약간 줄었다. 이상의 결과로 보아 기후변화시나리오에 근거로 대기 중 $CO_2$ 농도는 2배, 기온은 $6^{\circ}C$ 높은 환경 조건에서는 고추의 착과가 저해되고 과실 수량도 크게 감소하였으나, 완숙 과실의 비율은 증가하여 수확시기가 다소 앞당겨질 것으로 보인다.

Keywords

References

  1. FAO, 2004: Impact of climate change on agriculture in Asia and the Pacific. Twenty-seventh FAO Regional Conference for Asia and the Pacific. Beijing, China, 17-21.
  2. Hadley, P., G. R. Batts, R. H. Ellis, J. I. L. Morison, S. Pearson, and T. R. Wheeler, 1995: Temperature gradient chamber for research on global environment change. II. A twin-wall tunnel system for low-stature, field-grown crops using a split heat pump. Plant, Cell & Environment 18, 1055-1063. https://doi.org/10.1111/j.1365-3040.1995.tb00617.x
  3. Hansen, W. J., Sato, M., Ruedy, R., Lacis, A., and V. Oinas, 2000: Global warming in the twenty-frist century: an alternative senario. Proc. Natl. Acad. Sci. USA 97: 9875-9880. https://doi.org/10.1073/pnas.170278997
  4. Heo, Y., E. G. Park, B. G. Son, Y. W. Choi, Y. J. Lee, Y. H. Park, J. M. Suh, J. H. Cho, C. O. Hong, S. G. Lee, and J. S. Kang, 2013: The Influence of abnormally high temperature on growth and yield of hot pepper (Capsicum annuum L.). Journal of Agriculture & Life Science 47(2), 9-15. (in Korean with English abstract) https://doi.org/10.14397/jals.2013.47.6.9
  5. Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harrirs, A. Katenberg, and K. Maskell, 1996: Climate change 1995. The science of climate change. Cambridge Univ. Press, Cambridge.
  6. Hwang, J. M., and B. Y. Lee, 1978: Studies on some horticultural characters influencing quality and yield in the pepper (Capsicum annuum L.). II. Correlations and selection. Korean Journal of Horticultural Science & Technology 19, 48-55. (in Korean with English abstract)
  7. Intergovernmental Panel on Climate Change (IPCC), 2007: Climate change 2007: Mitigation of climate change, contribution of working group III. contribution to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, USA.
  8. Intergovernmental Panel on Climate Change (IPCC), 2013: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  9. Jang, K. S., D. J. Choi, D. H. Pae, J. T. Yoon, and S. K. Lee, 2000: Effects of altitudes on growth and fruit quality in red pepper (Capsicum annuum L.). Korean Journal of Horticultural Science & Technology 41(5), 485-489. (in Korean with English abstract)
  10. Kim, B. S., K. Y. Kim, S. K. Kim, and J. K. Sung, 1995: Pepper profitable techniques and marketing strategy. Nongminshinmunsa.
  11. Kim, S. H., H. You, E. G. Park, B. G. Son, Y. W. Cho., Y. J. Lee, Y. H. Park, J. M. Suh, J. M. Suh, J. H. Cho, C. O.Hong, S. G. Lee, and J. S. Kang, 2013: The influence of temperature, amino acid and polyamin on pollen germination of pepper (Capsicum annuum L.). Journal of Agriculture & Life Science 47(2), 1-8. (in Korean with English abstract) https://doi.org/10.14397/jals.2013.47.6.1
  12. Kim, S. O., D. J. Kim, J. H. Kim, and J. I. Yun, 2012: Freeze risk assessment for three major peach growing areas under the future climate projected by RCP8.5 emission scenario. Korean Journal of Agricultural and Forest Meteorology 14(3), 124-131. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.3.124
  13. NIMR, 2011: Climate change scenario report. National Institute of Meteorological Research, 79-99.
  14. Paul, M. J. and C. H. Foyer, 2001: Sink regulation of photosysthesis. Journal of Experimental Botany 52(360), 1383-1400. https://doi.org/10.1093/jexbot/52.360.1383
  15. Poster, J. R., and M. A. Semenov, 2005: Crop response to climatic variation. Philosophical Transactions of the Royal Society B 360(1463), 2021-2035. https://doi.org/10.1098/rstb.2005.1752
  16. Reddy, K. R., H. F. Hodges, and J. M. Mckinion, 1993: A temperature model for cotton phenology. Biotronics 22, 47-59.
  17. Reddy, K. R., H. F. Hodges, and J. M. Mckinion, 1995: Carbon dioxide and temperature effects on pigma cotton growth. Agriculture, Ecosystems and Environment 54, 17-29. https://doi.org/10.1016/0167-8809(95)00593-H
  18. Seo, J. A., Y. K. Yi, B. S. Kim, J. M. Hwang, and S. W. Choi, 2011: Disease occurrence on Red-pepper plants surveyed in Northern Kyungbuk Province, 2007-2008. Research in Plant Disease 17(2), 205-210. https://doi.org/10.5423/RPD.2011.17.2.205
  19. Shin, J. W., and S. C. Yun, 2011: Impact of climate change on fungicide spraying for Anthracnose on hot pepper in Korea during 2011-2100. Korean Journal of Agricultural and Forest Meteorology 13(1), 10-19. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2011.13.1.010
  20. Song, E. Y., K. H. Moon, I. C. Son, S. H. Wi, C. H. Kim, C. K. Lim, and S. J. Oh, 2015: Impact of elevating temperature based on climate change scenario on growth and fruit quality of red pepper (Capsicum annuum L.). Korean Journal of Agricultural and Forest Meteorology 17(3), 248-253. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.3.248
  21. Willits, D. H, and M. M. Peet, 1981: $CO_2$ enrichment in a solar collection/storage greenhouse. Paper 81-4525, 1981 Winter Meetings of the American Society of Agricultural Engineers meeting. Chicago, IL, USA.
  22. Wolfe, D. W., M. D. Schwartz, A. N. Lakso, Y. Otsuki, R. M. Pool, and N. J. Shaulis, 2005: Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. International Journal of Biometeorology 49, 303-309. https://doi.org/10.1007/s00484-004-0248-9