• Title/Summary/Keyword: 환경유전자

Search Result 1,148, Processing Time 0.028 seconds

Mechanisms Regulating the Expression of Cytochrome P450 (CYP) Enzymes Involved in Xenobiotic Metabolism (외인성 화학물질의 대사에 관여하는 Cytochrome P450 (CYP) 효소의 발현조절 기전)

  • Gyesik Min
    • Journal of Life Science
    • /
    • v.34 no.3
    • /
    • pp.199-207
    • /
    • 2024
  • Cytochrome P450s (CYP) enzymes play a central role in the metabolism of both endogenous and xenobiotic chemical compounds. In particular, therapeutic drugs, natural products and environmental toxicants regulate expression of the tissue-specific CYP enzymes, This can cause CYP-mediated interactions among the chemical compounds such as the ingested drugs and toxicants, resulting in changes in their metabolism. This can lead to the modifications of their therapeutic and toxic effects. Intense investigations in this field throughout the last several decades have resulted in considerable progress in understanding the molecular mechanisms mediating the regulation of CYP gene expression. Now, it is well established that xenobiotic chemicals regulate the expression of specific CYP genes, and the corresponding xenobiotic-sensing receptors that mediate the expression control of specific CYP genes and their signal transduction pathways are involved in this process. This review summarizes the molecular mechanisms by which the well-known major xenobiotic-sensing receptors and other regulators affect the induction of CYP gene expression in response to exposure to various chemicals.

Prevalence, virulence characteristics and antimicrobial resistance of Listeria monocytogenes isolated from salmon products (연어 제품에서 분리한 Listeria monocytogenes의 분포, 병원성 특성 및 항균제 내성)

  • Jin, Young Hee;Ryu, Seung Hee;Kwak, Jae Eun;Kim, Ri Ra;Choi, Young Hee;Lee, Myung Sook;Hwang, In Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.495-500
    • /
    • 2021
  • This study investigated the prevalence, serotypes, virulence genes, and antimicrobial resistance patterns of Listeria monocytogenes isolates collected from salmon products. A total of 16 out of 65 salmon products (24.6%) were positive for L. monocytogenes. Bacteria were most frequently identified in smoked salmon products (15/53, 28.3%). Serological tests revealed that serotype 1/2b (62.5%) was the predominant serotype of L. monocytogenes, followed by 1/2a (37.5%). All isolates harbored 10 virulence-associated genes (inlA, inlB, plcA, plcB, hlyA, actA, prf, fbpA, iap, and mpl), confirming their potential pathogenicity. The isolates of L. monocytogenes showed resistance to cefotetan (100%), cefotaxime (87.5%), cefepime (31.3%), erythromycin (6.3%), and tetracycline (6.3%); however, most of the strains were susceptible to antimicrobials except cephalosporins. These results provide useful information regarding the contamination of salmon products with L. monocytogenes, which may have implications for public health.

Expression of Digestive Enzyme Genes in the Digestive Tract of the Two-spotted Cricket During Starvation (쌍별 귀뚜라미의 소화기관에서 기아에 의한 소화효소 유전자의 발현)

  • Lee, Nuri;Lee, Eun-Ryeong;Kwon, Kisang;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.82-87
    • /
    • 2020
  • The gene expression of amylase, trypsin, and lipase in the digestive organs of the two-spotted cricket (Gryllus bimaculatus) was tested to understand how it overcomes starvation. Amylase gene expression in the foregut was reduced by digesting no food until starvation-3 days. Although that expression persisted to starvation-6 days, it returned to normal at refeeding-2 days. The expression of trypsin peaked at around 8 times as starvation started and at around 4 times at starvation-3 days. After refeeding, trypsin expression rose up to 14 times and then fell back to normal as feeding continued. Lipase gene expression remained elevated at 1.5-2 times when starvation started and returned to normal at refeeding-2 days. In the midgut, amylase expression decreased until starvation-3 days, increasing to about 2 times at starvation-6 days; it did not rise again by refeeding. Trypsin was constantly expressed regardless of starvation and refeeding, while lipase expression was reduced by 0.6-0.7 times by starvation and refeeding. Amylase gene expression in the hindgut was 0.2-0.3 times lower than starvation-6 days, and it increased by 0.5 times on refeeding-1 day and more than 1.5 times on refeeding-3 days. The gene expression of trypsin was almost identical to amylase.

Detection of LM canola with tolerance to glyphosate and glufosinate-ammonium via the Environmental monitoring in South Korea (자연생태계 모니터링을 통한 glyphosate와 glufosinate-ammonium에 저항성을 가지는 유전자변형 캐놀라의 발견)

  • Shin, Su Young;Jo, Beom-Ho;Moon, Jeong Chan;Lee, Jung Ro;Choi, Wonkyun;Seol, Min-A;Kim, Mi-Jeong;Song, Hae-Ryong
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.479-485
    • /
    • 2016
  • Living modified (LM) crops are imported each year to South Korea as food and feeds, LM canola being one of the imported crops. The cultivation of LM crops is not permitted in South Korea but the import of these crops is increasing. In this study, we surveyed the environmental risk of imported LM canola at 9 provinces, from March 2009 to June 2013. Monitoring of canola was conducted around feed factories, roadsides, harbors, farmhouses, and flower festival regions. From the total of 595 canola samples collected from 1850 monitoring sites, we identified 6 LM canola samples. The LM canola samples were subjected to protein and DNA based analysis. PCR analyses using approved 5 single event primers (T45, MS8, RT73, Rf3 and Topas 19-2) revealed that two crops were glyphosate-resistant LM canolas, and four were glufosinate-resistant LM canolas. This study suggested that environmental monitoring is a useful research tool to manage LM crops unintentionally introduced into the environment in South Korea. This result can be used as a basis for future post-management of canola crops.

Transcriptomic analysis of 'Campbell Early' and 'Muscat Bailey A' grapevine shoots exposed to freezing cold stress (영하의 저온에 노출된 'Campbell Early'와 'Muscat Bailey A' 포도나무 신초의 전사체 비교)

  • Kim, Seon Ae;Yun, Hae Keun
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.204-212
    • /
    • 2016
  • To understand the responses of grapevines in response to cold stress causing the limited growth and development, differentially expressed genes (DEGs) were screened through transcriptome analysis of shoots from 2 grapevine cultivars ('Campbell Early' and 'Muscat Baily A') kept at -$2^{\circ}C$ for 4 days. In gene ontology analysis of DEGs from 'Campbell Early', there were 17,424 clones related with biological process, 28,954 with cellular component, and 6,972 with molecular function genes in response to freezing temperature. The major induced genes included dehydrin xero 1, K-box region and MADS-box transcription factor family protein, and MYB domain protein 36, and inhibited genes included light-harvesting chlorophyll B-binding protein 3, FASCICLIN-like arabinoogalactan 9, and pectin methylesterase 61 in 'Campbell Early' grapevines. In gene ontology analysis of DEGs from 'Muscat Baily A', there were 1,157 clones related with biological process, 1,350 with cellular component, and 431 with molecular function gene. The major induced genes of 'Muscat Baily A' included NB-ARC domain-containing disease resistance protein, fatty acid hydrozylase superfamily, and isopentenyltransferase 3, and inhibited genes included binding, IAP-like protein 1, and pentatricopeptide repeat superfamily protein. All major DEGs were shown to be expressed differentially by freezing temperature in real time-PCR analysis. Protein domain analysis using InterPro Scan revealed that ubiquitin-protein ligase was redundant in both tested grapevines. Transcriptome profile of shoots exposed to cold can provide new insights into the molecular basis of tolerance to low-temperature in grapevines, and can be used as resources for development new grapevines tolerant to coldness.

Phenotypic and molecular characteristics of second clone (T0V2) plants of the LeLs-antisense gene-transgenic chrysanthemum line exhibiting non-branching (무측지성 국화 형질전환 계통 영양번식 제2세대의 형태적 및 분자생물학적 특성)

  • Lee, Su Young;Kim, Jeong-Ho;Cheon, Kyeong-Seong;Lee, Eun Kyung;Kim, Won Hee;Kwon, O Hyeon;Lee, Hye Jin
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.192-197
    • /
    • 2013
  • This study examined the phenotypic and molecular characteristics of the $2^{nd}$ clone ($T_0V_2$) plants of LeLs-antisense gene-transgenic chrysanthemum line (LeLs80) that exhibited non-branching, proving the relevance of these characteristics as a factor for use in environmental risk assessment. Results of the Southern blot analysis showed that three copies of the LeLs-antisense gene were introduced into the transgenic line, and northern analysis showed that the transcripted gene was normally expressed in the transgenic line. A flanking T-DNA sequencing method was used to determine that sequences of 184 and 464 bps flanked the LeLs-antisense gene in the transgenic line. These sequences, respectively, matched the 35S promoter for expression of the npt II gene and the NOS terminator for expression of the LeLs-antisense gene within the pCAMBIA 2300 vector.

Expression of Cytochrome P450 Aromatase Genes during Sex Differentiation in Korean Rockfish, Sebastes schlegeli (조피볼락, Sebastes schlegeli의 성분화 기간 중 Cytochrome P450 Aromatase 유전자의 발현)

  • Lee, Chan-Hee;Kwon, Joon-Yeong
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.195-203
    • /
    • 2007
  • Sex determination and sex differentiation are influenced by genotype in many gonochoristic fish. Cytochrome P450 aromatase (CYP19) is the terminal enzyme in steridogenic pathway that converts androgens into estrogens. In this study, partial fragments of aromatase genes (ovarian aromatase, P450aromA and brain aromatase, P450aromB) were cloned and sequenced in Korean rockfish (Sebastes schlegeli), and gene specific primers were designed based on their sequences. Using these primers, aromatase gene expression during sex differentiation was investigated by RT-PCR. Expression of these aromatase genes were detected both in the head and body parts at 35 dab (days after birth). The number of fish that expressed the aromatase genes decreased at 52 dab, implying down-regulation of these genes. However, these genes were expressed at 59 dab in almost all fish studied here. The expression patterns of both genes are similar throughout the investigated period except for 45 dab where the expression of P450aromB was detected in more fish than that of P450aromA both in the head and body parts. Timing of sex differentiation in this species has been shown to be at around $50{\sim}65$ dab by histological analysis. However, the results from this study suggest that sex differentiation of rockfish may take place $1{\sim}2$ weeks earlier than the period proposed previously. The results also suggest that the mechanism of sex differentiation in viviparous fish may be similar to that in oviparous fish in terms of the importance of aromatase action during the critical period.

  • PDF

Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage (배추의 건조 저항성 유전자, BrDSR의 기능 검정)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.102-111
    • /
    • 2016
  • The goal of this study was to characterize the BrDSR (Drought Stress Resistance in B. rapa) gene and to identify the expression network of drought-inducible genes in Chinese cabbage under drought stress. Agrobacterium-mediated transformation was conducted using a B. rapa inbred line ('CT001') and the pSL100 vector containing the BrDSR full length CDS (438 bp open reading frame). Four transgenic plants were selected by PCR and the expression level of BrDSR was approximately 1.9-3.4-fold greater than that in the wild-type control under drought stress. Phenotypic characteristics showed that BrDSR over-expressing plants were resistant to drought stress and showed normal growth habit. To construct a co-expression network of drought-responsive genes, B. rapa 135K cDNA microarray data was analyzed to identify genes associated with BrDSR. BrDSR was directly linked to DARK INDUCIBLE 2 (DIN2, AT3G60140) and AUTOPHAGY 8H (ATG8H, AT3G06420) previously reported to be leaf senescence and autophagy-related genes in plants. Taken together, the results of this study indicated that BrDSR plays a significant role in enhancement of tolerance to drought conditions.

A Study on Acceptance of Blockchain-Based Genetic Information Platform (블록체인 기반 유전자분석 정보플랫폼의 수용에 대한 연구)

  • In Seon Choi;Dong Chan Park;Doo Hee Chung
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.97-125
    • /
    • 2021
  • Blockchain is a core technology to solve personal information leakage and data management issues, which are limitations of existing Genomic Sequencing services. Due to continuous cost reduction and deregulation, the market size of Genomic Sequencing has been increasing, also the potential of services is expected to increase when Blockchain's security and connectivity are combined. We created our research model by combining the Technology Acceptance Model (TAM) and the Innovation Resistance Theory also analyzed the factors affecting the acceptance intention and innovation resistance of the Blockchain Based Genomic Sequencing Information Platform. A survey was conducted on 150 potential users of Blockchain and Genomic Sequencing services. The analysis was conducted by setting the four Blockchain variables: Security, transparency, availability, and diversity). Also, we set the Perceived Usefulness, Perceived risk, and Perceived Complexity for Technology Acceptance and Innovation Resistance variables and analyzed the effect of the characteristics of the Blockchain on acceptance intention and innovation resistance through these variables. Through this analysis, key variables that need to be considered important to reduce resistance and increase acceptance intention could be identified. This study presents innovation factors that should be considered in companies preparing a new Blockchain Based Genomic Sequencing Information Platform.

Gene Expression of Glutathione Peroxidase in $Saccharomyces$ $cerevisiae$ Treated with $N$-acetyl-L-cysteine and Gamma-rays ($Saccharomyces$ $cerevisiae$에서 $N$-acetyl-L-cysteine 처리와 감마선 조사에 따른 Glutathione Peroxidase 유전자 발현)

  • Park, Ji-Young;Baek, Dong-Won;Nili, Mohammad;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.258-264
    • /
    • 2011
  • Glutathione (GSH) has important roles in cellular defense against oxidative stress, 1) direct scavenging of reactive oxygen species (ROS), and 2) coenzyme of ROS scavenging enzyme like glutathione peroxidases (GPx). GSH peroxidase reduces free hydrogen peroxide to water using 2GSH. $N$-acetyl-L-cysteine (NAC), one of the antioxidants, is used as a precursor for intracellular GSH. In this study, relation of GSH, NAC, and GSH peroxidase was investigated through transcriptional expression of $GPX1$ and $GPX2$, which are GSH peroxidase encoding genes, in yeast cells treated with 0 mM to 20 mM of NAC or in combination with 100 Gy gamma-rays. The transcriptional expression of $GPX1$ and $GPX2$ was induced by NAC and 100 Gy gamma-rays. The gene expression of both GSH peroxidases was decreased with increasing concentrations of NAC in irradiated yeast cells. These results suggest that elevation of intracellular GSH by NAC and oxidative stress and ROS generated from gamma-rays induces expression of GSH peroxidase genes, and that NAC can protect the yeast cells against ROS generated from gamma-rays through direct scavenging of ROS and transcriptional activation of GSH peroxidase.