DOI QR코드

DOI QR Code

Phenotypic and molecular characteristics of second clone (T0V2) plants of the LeLs-antisense gene-transgenic chrysanthemum line exhibiting non-branching

무측지성 국화 형질전환 계통 영양번식 제2세대의 형태적 및 분자생물학적 특성

  • Lee, Su Young (National Institute of Horticultural and Herbal Science) ;
  • Kim, Jeong-Ho (National Institute of Horticultural and Herbal Science) ;
  • Cheon, Kyeong-Seong (National Institute of Horticultural and Herbal Science) ;
  • Lee, Eun Kyung (National Institute of Horticultural and Herbal Science) ;
  • Kim, Won Hee (National Institute of Horticultural and Herbal Science) ;
  • Kwon, O Hyeon (National Institute of Horticultural and Herbal Science) ;
  • Lee, Hye Jin (National Institute of Horticultural and Herbal Science)
  • Received : 2013.10.17
  • Accepted : 2013.11.02
  • Published : 2013.12.31

Abstract

This study examined the phenotypic and molecular characteristics of the $2^{nd}$ clone ($T_0V_2$) plants of LeLs-antisense gene-transgenic chrysanthemum line (LeLs80) that exhibited non-branching, proving the relevance of these characteristics as a factor for use in environmental risk assessment. Results of the Southern blot analysis showed that three copies of the LeLs-antisense gene were introduced into the transgenic line, and northern analysis showed that the transcripted gene was normally expressed in the transgenic line. A flanking T-DNA sequencing method was used to determine that sequences of 184 and 464 bps flanked the LeLs-antisense gene in the transgenic line. These sequences, respectively, matched the 35S promoter for expression of the npt II gene and the NOS terminator for expression of the LeLs-antisense gene within the pCAMBIA 2300 vector.

환경위해성평가 연구 대상인 형질전환 이벤트로서의 자격을 확인하고자 형질전환세대($T_0V_0$)에서와 같이 영양번식 제1세대($T_0V_1$)에서도 도입유전자 LeLs-antisense의 발현 특성인 무측지성을 유지한 국화 무측지성 형질전환계통 LeLs80의 영양번식 제2세대($T_0V_2$)의 형태적 및 분자 생물학적 특성을 조사하였다. LeLs80 계통의 $T_0V_2$에서도 LeLs-antisense 유전자의 발현 특성인 무측지성이 안정적으로 유지되는 것을 확인하였다. 또한, Southern 및 Northern 분석에 의해 LeLs-antisense 유전자가 3 copy 도입되었으며, LeLs-antisense 유전자의 전사체가 정상적으로 발현되는 것도 확인할 수 있었다. 또한 flanking T-DNA sequencing method를 이용하여 LeLs-antisense 유전자의 주변 염기서열 분석 통해 LeLs80 계통의 genome내 LeLs-antisense 유전자 주변에 186 ~ 464 bp의 pCAMBIA2300 T-DNA right border 부근으로 추정되는 염기서열이 확인되었고, pCAMBIA2300 전 염기서열과의 비교 분석한 결과, pCAMBIA2300 T-DNA left border와 right border내 선발마커 유전자 NPT II의 발현 promoter 부분과 LeLs-antisense 유전자 발현 terminator 일부 염기서열과 일치하였다.

Keywords

References

  1. Han BH, Lee SY, Choi SY (2009) MdMADS2-transgenic chrysanthemum (Dendranthema x grandiflorum (Ramat.) Kitamura) showing the reduction of the days to flowering. J. Plant Biotech. 36:366-372 https://doi.org/10.5010/JPB.2009.36.4.366
  2. Han BH, Suh EJ, Lee SY, Shin HK, Lim YP (2007) Selection of non-branching lines induced by introducing Ls-like cDNA into chrysanthemum (Dendranthema x grandiflorum (Ramat.) Kitamura) 'Shuho-no-chikara' Scientia Horticulturae 115:70-75 https://doi.org/10.1016/j.scienta.2007.07.012
  3. Hur YJ, Han BH, Park SK, Lee SY, Jung KM, Park CH (2013) Inhibition of chrysanthemum axillary buds via transformation with the antisense tomato lateral suppressor gene is season dependent. Hort Environ Biotechnol 54:280-287 https://doi.org/10.1007/s13580-013-0116-9
  4. Jiang BB, Miao HB, Chen SM, Zhang SM, Chen FD, Fang WM (2010) The lateral suppressor-Like gene, DgLsL, alternated the axillary branching in transgenic chrysanthemum (Chrysanthemum x morifolium) by modulating IAA and GA Content. Plant Mol Biol Rep 28: 144-151 https://doi.org/10.1007/s11105-009-0130-3
  5. Khodakovskaya M, Vankova R, Malbeck J, Li A, Li Y, McAvoy R (2009) Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821 kb fragment of the LEACO1 gene promoter. Plant Cell Rep. 28:1351-1362 https://doi.org/10.1007/s00299-009-0735-x
  6. Kim YS, Lim S, Kang KK, Jung YJ, Lee YH, Choi YE, Sano H (2011a) Resistance against beet armyworms and cotton aphids in caffeine-producing transgenic chrysanthemum. Plant Biotechnol 28: 393-395 https://doi.org/10.5511/plantbiotechnology.11.0510a
  7. Kim YS, Lim S, Yoda H, Choi CS, Choi YE, Sano H (2011b) Simultaneous activation of salicylate production and fungal resistance in transgenic chrysanthemum producing caffeine. Plant Signaling Behavior 6: 409-412 https://doi.org/10.4161/psb.6.3.14353
  8. Kubo T, Tsuro M, Tsukimori A, Shizukawa Y, Takemoto T, Inaba K, Shiozaki S (2006) Morphological and physiological changes in transgenic chrysanthemum morifolium Ramat. "Ogura-nishiki" with rolC. J Japan Soc Hort Sci 75:312-317 https://doi.org/10.2503/jjshs.75.312
  9. Lee SY, Han BH, Hur EJ, Shin HK, Kim ST, Lee EK, Kim WH, Kwon OH, Lee IH (2012) FT-transgenic spray-type chrysanthemum (Dendranthema grandiflorum Kitamura) showing earlyflowering. J. Plant Biotech. 39:140-145 https://doi.org/10.5010/JPB.2012.39.3.140
  10. Mitiouchkina, TY, Dolgov SV (2000) Modification of chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes induction. Acta Hort. 508:163-169.
  11. Shinoyama H, Mochizuki A, Nomura Y, Kamada H (2008) Environmental risk assessment of genetically modified chrysanthemums containing a modified cry1Ab gene from Bacillus thuringiensis. Plant Biotechnol. 25: 17-29 https://doi.org/10.5511/plantbiotechnology.25.17
  12. Shinoyama H, Sano T, Saito M, Ezura H, Aida R, Nomura Y, Kamada H (2012) Induction of male sterility in transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) by expression of a mutated ethylene receptor gene, Cm-ETR1/H69A, and the stability of this sterility at varying growth temperatures. Mol Breeding 29: 285-295 https://doi.org/10.1007/s11032-010-9546-6
  13. Shulga OA, Mitiouchkina TY, Shchennikova AV, Skryabin, KG, Dolgov SV (2011) Overexpression of AP1-like genes from Asteraceae induces early-flowering in transgenic Chrysanthemum plants. In Vitro Cell. Develop. Biol.-Plant 47: 553-560 https://doi.org/10.1007/s11627-011-9393-0
  14. Schumacher K, Schmitt T, Rossberg M, Schmitz C, Theres K (1999) The lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein gamily. Peoc Natl Acad Sci USA 96:290-295 https://doi.org/10.1073/pnas.96.1.290
  15. Takatsu Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hort 82:113-123 https://doi.org/10.1016/S0304-4238(99)00034-5

Cited by

  1. The Selection of Domestically Bred Cultivars for Spray-type Chrysanthemum Transformation vol.33, pp.6, 2015, https://doi.org/10.7235/hort.2015.15017