• Title/Summary/Keyword: 환경공학적 특성

Search Result 302, Processing Time 0.03 seconds

A Case Studty on the Ground Reinforcement and Waterproofing Effect of Weathering and Fault Zone by Special Injection Tip Equipment Using Microcement Type (특수주입선단장치에 의한 마이크로시멘트계 약액주입의 풍화대, 단층파쇄대의 지반보강 및 차수효과 사례연구)

  • Do, Jongnam;Jung, Jongju;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2009
  • A grouting method has been widely used in construction of large-scale structure to reduce permeability and reinforce the ground. If cement and grout material were not mixed well in the injection tip equipment, an opposite flow and interception state of the chemical grouting can occur. McG (Multi-mixing counterflow prevented Grouting, McG) method installed a special grouting device to allow better mixing of the grouting material(above fineness $6,000cm^2/g$) and prevent backward flow. The block of nozzle also diversify powder rate of cement. YSS (Youngil Special Silicate, YSS) that lowers $Na_2O$ and thereby increases durability was developed by gel-forming reaction material. The seepage state and unconfined compressive strength of the injection material using the special injection tip equipment was tested in this study. The results of this study showed that the uniaxial compressive strength, permeability, N-value, TCR and RQD were improved by this method. Engineering characteristics obtained by the special injection tip method will be compared with those by the other method through various field tests from now on.

  • PDF

Geotechnical Characterization of Artificial Aggregate made from Recycled Resources of Gwangyang Bay Area as a Drainage Material (광양만권 순환자원으로 제조된 배수재용 인공골재의 지반공학적 특성)

  • Kim, Youngsang;Kim, Wonbong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.49-57
    • /
    • 2013
  • Recently, recycling of the industrial by-products has been an important issue of the Yeosu bay, where large industrial complex is located. Major industrial by-products which are produced from Yeosu industrial complex area are phosphogypsum and flyash, which are about 82% and 10% of the 1.6 million tons industrial by-products. Moreover since the Yeosu industrial complex is located at seaside, phosphogypsum has been pointed as cause of serious environmental contaminant from the regional society. Therefore recycling study can't be delayed anymore. In this paper, artificial aggregate was manufactured by non-sintering process from industrial byproducts - e.g., phosphogypsum and slag - as a geotechnical drainage material. To show the feasibility of the artificial aggregate as a geotechnical drainage material, geotechnical experiments including particle size analysis, permeability test, and large scale direct shear test were carried out. Test results show that the permeability of the artificial aggregates range from $6.94{\times}10^{-1}cm/sec$ to $8.86{\times}10^{-1}cm/sec$, which is much larger value than those are required for the drainage material from the construction specification in Korea, and the friction angle of the artificial aggregate is as large as that of sand in water immersion conditions. From the test results, it was concluded that artificial aggregate made from industrial by-products can be used successfully as a geotechnical drainage material.

Synthesis of graphene and its application to thermal and surface modification (그래핀의 합성과 열전도 및 표면 특성 개선 활용)

  • Kim, Yong-You;Jang, Hee-Jin;Choi, Byung-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.549-554
    • /
    • 2013
  • With the synthesis of graphene on Cu using CVD, it was tried to show the behavior of graphene growth depending on the size and orientation of Cu grain. It was found out that even under the same temperature and pressure the use of different gases influences on the diffusion rate of Cu. As compared to Ar gas, Cu grain growing bigger under $H_2$ and $CH_4$ was resulted in bigger graphene grain. Corrosion resistance was evaluated by potentiodynamic polarization test in room temperature and found out that the graphene on Cu was more stable in order of 10 than pure Cu due to the chemical stability of graphene. The future work of this research will focus on the synthesis of graphene having no defects including grain boundaries, and its engineering use.

An Experimental Study for Supposed Heating Temperature of Deteriorated Concrete Structure by fire Accident (화재피해를 입은 콘크리트구조물의 수열온도 추정을 위한 실험적 연구)

  • 권영진
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-56
    • /
    • 2004
  • A fire outbreak in a reinforcement concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So concrete reinforcement structure is damaged partial or whole structure system. Therefore diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, it was presented data for the accurate diagnosis and selection of repair and reinforcement system for the deteriorated concrete heated highly, various concrete such as standard design compressive strength, fine aggregate and admixture were exposed to a high temperature environment. And fundamental data were measured engineering properties such as explosive spatting, ultrasonic pulse velocity and compressive strength.

Plant Biomass Degradation and Bioethanol Production Using Hyperthermophilic Bacterium Caldicellulosiruptor bescii (고온성 세균 Caldicellulosiruptor bescii를 이용한 식물성 바이오매스의 분해와 바이오에탄올의 생산)

  • Lee, Han-Seung
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1450-1457
    • /
    • 2015
  • To overcome the depletion of fossil fuels and environmental problems in future, the research and production of biofuels have attracted attention largely. Thermophilic microorganisms produce effective and robust enzymes which can hydrolyze plant biomass and survive under harsh bioprocessing conditions. Caldicellulosiruptor bescii, which can degrade unpretreated plants and grow on them, is the one of the best candidates for consolidated bioprocessing (CBP). C. bescii can hydrolyze pectin efficiently as well as the major plant cell wall components, cellulose and hemicelluloses. Many glycosyl hydrolases and carbohydrate lyases with multidomain structure play an important role in plant biomass decomposition. Recently genetic tools for metabolic engineering of C. bescii have developed and bioethanol production from unpretreated biomass is achieved in C. bescii. Here, we review the recent studies for biomass degradation by C. bescii and bioethanol production in C. bescii in order to provide information about metabolic engineering of themophilic bacteria and biofuel development.

A Study on the Correlation between Underwater Noise and Ground Vibration (지반진동과 수중소음의 상관성 연구)

  • Park, Jung-Bong;Kang, Choo-Won;Lee, Chang-Won
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.11-22
    • /
    • 2013
  • This study compared and analysed ground vibration, size of underwater background noise in fish farms and underwater object noise of blasting and obtained ground vibration prediction equation through a regression analysis and correlation equation between underwater object noises in order to predict degrees of underwater noise in blasting and organize underwater noise control regulations. Before the study, when background noise of fish and shellfish farms with different conditions was measured, levels of background noise were different according to environmental characteristics of each farm. Ground vibration which causes underwater noise was measured to obtain a correlation equation between ground vibration and underwater object noise. Therefore, if underwater noise is predicted for each construction with a use of a correlation and permissible standards appropriate for each condition are applied for design and construction, financial loss from damages to fish and shellfish caused by development of insufficient technological and engineering logic can be prevented and successful construction with safety of underwater creatures guaranteed can be achieved.

Study on Simple Repetitive Work and the Risks of Musculoskeletal Injuries (단순반복 작업유형별 근골격계 질환 발생특성과 예방 대책에 관한 연구)

  • 임완희
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.24-35
    • /
    • 2004
  • According to the results of this study, we found through preliminary research that most of the workers studied suffered from some sort of musculoskeletal injury, but did not obtain hospital treatment, which shows that although their work was the source of injury, they did not realize the significance of their injury. In addition, there were some subjects that did not even know what musculoskeletal injuries were and in order to solve such problems, companies need to educate their workers about musculoskeletal injuries and show the significance of the injuries. Also, there was a difference in rates of musculoskeletal injuries in different occupations, with higher rates of injury in esthetics, driving and packaging positions. This calls for the use of automated machinery and alteration of the working environment to make it more ergonomic according to the recommended improvement plan, and continuous effort and support on the part of the company in order to reduce the risk of musculoskeletal injuries.

  • PDF

Modeling of Eco-Industrial Park (EIP) through Material Flow Analysis (MFA) (물질흐름분석을 통한 생태산업단지의 모델링)

  • Lee, Seungjun;Yoo, ChangKyoo;Choi, Sang Kyo;Chun, Hee Dong;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.579-587
    • /
    • 2006
  • Recently, each country has been trying to promote Eco-Industrial Park (EIP) development for industrial sustainability. Technological modeling is required to realize EIP practically even though the project contains the political concerns for many companies, government, and self-governing bodies. The four main technologies of the EIP developments include energy exchange, material flow analysis, water pinch, and life cycle assessment. Material flow analysis (MFA) methodology can be utilized in EIP modeling in view of the fact that the analysis of material flows and the optimized modeling are major purposes for the technological modeling of EIP. Through MFA methodology in POHANG EIP project, how to apply MFA modeling to EIP modeling and how to utilize software for MFA modeling are shown in this research.

A Study on Guidelines for the Repair of Water-Leakage Cracks in Concrete Structures (콘크리트 구조물에 있어서 누수균열 보수를 위한 일반지침 제안 연구)

  • Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.97-107
    • /
    • 2010
  • This study outlines a successful and effective plan for repairing water-leakage cracks in concrete structures. The lack of adequate solutions for water-leakage cracks often results in unnecessarily high repair costs, and as such this remains a problem that requires constant attention. Unfortunately, despite the availability of a vast number of different materials and methods, it is often difficult to attain a perfect waterproof sealing The reason for the difficulties in the repair of water-leakage cracks can be attributed to an insufficient knowledge and understanding of the negative factors (i.e., chemical and physical (mechanical) conditions) that cause water-leakage cracks, and of the properties of the repair materials and methods. In this study, guidelines and methods for the selection of adequate materials for the repair of water-leakage cracks in concrete structures were developed for countries that do not already have general guidelines on this subject, and for local regulatory authorities elsewhere.

Charateristics of Soft Paving Materials used Eco-friendly (친환경 소프트 포장재의 공학적 특성에 관한 연구)

  • Jeon, Du-Jun;Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.206-213
    • /
    • 2019
  • Purpose: This study aims to develop eco - friendly paving materials using Sawdust and EPDM chips. Method: Materials are eco-friendly materials and have no environmental problems. By using EPDM chip, the walking feeling can be increased. Results: In this study, the optimum mixing ratio was calculated through mixing design test. Based on the blending ratio, the surface layer of the sidewalk is made of fine sawdust and EPDM chips. We used only sawdust of grain - 107 -size to make the base layer of the sidewalks and the surface layer of the bicycle road with the permeability and the anti - resilience, and suggested the application method through the test construction. Conclusion: This study the expected that the recent efforts of the government to reduce the elastic paving material, which is the environmentally harmful problem with the complete eco-friendly paving material, are expected to revive.