Geotechnical Characterization of Artificial Aggregate made from Recycled Resources of Gwangyang Bay Area as a Drainage Material

광양만권 순환자원으로 제조된 배수재용 인공골재의 지반공학적 특성

  • Published : 2013.10.01

Abstract

Recently, recycling of the industrial by-products has been an important issue of the Yeosu bay, where large industrial complex is located. Major industrial by-products which are produced from Yeosu industrial complex area are phosphogypsum and flyash, which are about 82% and 10% of the 1.6 million tons industrial by-products. Moreover since the Yeosu industrial complex is located at seaside, phosphogypsum has been pointed as cause of serious environmental contaminant from the regional society. Therefore recycling study can't be delayed anymore. In this paper, artificial aggregate was manufactured by non-sintering process from industrial byproducts - e.g., phosphogypsum and slag - as a geotechnical drainage material. To show the feasibility of the artificial aggregate as a geotechnical drainage material, geotechnical experiments including particle size analysis, permeability test, and large scale direct shear test were carried out. Test results show that the permeability of the artificial aggregates range from $6.94{\times}10^{-1}cm/sec$ to $8.86{\times}10^{-1}cm/sec$, which is much larger value than those are required for the drainage material from the construction specification in Korea, and the friction angle of the artificial aggregate is as large as that of sand in water immersion conditions. From the test results, it was concluded that artificial aggregate made from industrial by-products can be used successfully as a geotechnical drainage material.

전남 여수, 광양지역을 중심으로 한 광양만권 지역의 공업기반 시설은 석유화학단지와 제철소 및 제철연관단지 등 대단위산업단지로 조성되어 있으며, 이중 여수산업단지에서만 발생되는 다양한 산업부산물의 발생량만도 160만 톤이나 이들의 재활용률은 52%에 불과하다. 한편 우리나라의 천연골재의 채취 가능량은 80억$m^3$이며, 연간 수요량 2.4억$m^3$을 고려하면 33년간만 채취가 가능하며, 골재채취로 인한 환경파괴 등으로 정부는 연간 골재 채취량을 제한하고 있다. 이와 같은 환경과 자원의 문제가 국가적인 차원의 중요한 문제로 대두되고 있는 가운데, 각종 산업부산물의 재자원화를 위한 다양한 연구가 요구되고 있는 실정이다. 이 논문에서는 광양만권 산업부산물의 적절한 대량 처리방안과 광양만권 연약지반 건설현장의 경제적인 골재확보 방안의 일환으로, 인산석고와 슬래그를 이용한 인공골재를 제작하고 연약지반 개량을 위한 배수재로의 활용방안을 검토하였다. 인공골재의 제작 시 소정의 강도를 가지며, 인산석고와 슬래그 등 산업부산물의 재활용을 극대화하기 위하여 소량의 시멘트를 첨가하였으며 비소성 방식으로 제작하였다. 제조된 인공골재를 배수재용 골재로 사용하기 위해 시방기준의 검토를 위한 입도시험, 정수위 투수시험과 대형직접전 단시험을 실시한 결과, 인공골재에는 #200체 통과량이 15% 이하이며, 투수계수 $1{\times}10^{-3}cm/sec$ 이상인 시방기준을 충분히 만족하는 것으로 나타났다. 또한 대형직접전단시험 결과 건조 시료는 천연 쇄석과 유사한 내부마찰각을 가지며, 24시간 수침조건에서도 해사보다 우수한 것으로 나타나 연약지반에서 장비주행을 위한 지지력 확보에도 매우 유용할 것으로 판단된다.

Keywords

References

  1. 건설교통부 건설선진화본부 건설지원팀(2005), 골재채취업무편람, 건설교통부, 51 p.
  2. Barton, N. and Kjaernsli, B.(1981), Shear strength of rockfill, Journal of Geotechnical Engineering, Vol. 107, No. GT7, pp. 873-891.
  3. Berndt, M. L.(2009), Properties of sustainable concrete containing fly ash, slag, and recycled concrete aggregate, Construction and Building Materials, Vol. 23, No. 7, pp. 2606-2613. https://doi.org/10.1016/j.conbuildmat.2009.02.011
  4. Blight, G. E.(1969), Waste gypsum as an embankment material, Proceedings of the Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico City, pp. 39-43.
  5. Chun, B. S.(2004), A Study on the applicability of copper slag as drainage material, Journal of Korean Geo-Environmental Society, Vol. 5, No. 4, pp. 65-72 (in Korean).
  6. Demirdag, S., Ugur, I. and Sarac, S.(2008), The effect of cement/fly ash ratio on the volcanic slag aggregate lightweight concrete masonry unit, Construction and Building Materials, Vol. 22, No. 8, pp. 1730-1735. https://doi.org/10.1016/j.conbuildmat.2007.05.011
  7. Evans, G. L. and Bell, D. H.(1981), Chemical stabilization of loess, Proceeding of the Tenth International Conference on Soil Mechanics and Foundation Engineering, New Zealand, pp. 649-658.
  8. Holm, G., Trank, R. and Ekstrom, A.(1983), Improving lime column strength with gypsum, Improvement of ground, Proceeding of Eighth European Conference on Soil Mechanics and Foundation Engineering, Helsinki, pp. 903-907.
  9. Holmstrom, Ola C. and Swan, Christoper W.(1999), Geotechnical properties of innovative, synthetic lightweight aggregates, Proceedings of the 1999 International Ash Utilization Symposium, October 18-20, Lexington Center's Heritage Hall, Hyatt Regency Lexington.
  10. Huang, S. C., Chang, F. C. and Lo, S. L.(2007), Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash, Journal of Hazardous Materials, Vol. 144, Issues 1-2, pp. 52-58. https://doi.org/10.1016/j.jhazmat.2006.09.094
  11. Japan Geotechnical Society(1986), Deformation and strength of coarse material (in Japanese).
  12. Jo, B. W., Kwon, O. Y. and Park, S. K.(2004), Development of fly-ash artificial lightweight aggregate by non-sintering and an experimental study on its application of concrete, Journal of KSCE, Vol. 24, No. 2, pp. 293-299 (in Korean).
  13. Kim, Y. S., Suh, D. E., Lee, W. B. and Kim, W. B.(2009), Engineering characteristics of the light weight soil used phosphogypsum and EPS beads, Journal of Korean Geo-Environmental Society, Vol. 10, No. 6, pp. 19-25 (in Korean).
  14. Kim, W. B.(2010), Geotechnical characterization of artificial aggregates for geotechnical drainage material using phosphogypsum, Master's Thesis, Chonnam National University, pp. 3-15.
  15. Korea Expressway Corporation(2009), Expressway construction guide specification, Ch. 2, Soil improvement, 2-3 horizontal drainage construction pp. 2-6 (in Korean).
  16. Kujala, K. and Nieminen, P.(1983), On the reaction of clays stabilized with gypsum lime, Improvement of Ground, Proceeding of Eighth European Conference on Soil Mechanics and Foundation Engineering, Helsinki, pp. 929-932.
  17. Lee, D. S.(2008), Shear behavior of crushed rocks based on large-scale direct shear tests, Ph.D. Dissertation, Yonsei University, pp. 5-109 (in Korean).
  18. Marachi, N. D., Chan, C. K. and Seed, H. B.(1972), Evaluation of properties of rockfill materials, Journal of Soil Mechanics and Foundation Div., Vol. 98, No. SM1, pp. 95-114.
  19. Marsal, R. J.(1967), Large scale testing of rockfill materials, Journal of Soil Mechanics and Foundation Div., Vol. 93, No. 2, pp. 27-43.
  20. Marsal, R. J.(1973), Mechanical properties of rockfill in embankment dam engineering, Casagrande Colume, John Wiley & Sons, New York, pp. 109-200.
  21. Mun, K. J, Lee, M. H., So, S. Y. and Soh, Y. S.(2006), Manufacturing of non-sintered artificial aggregate using municipal solid waste incinerator fly ash, Journal of Architectural Institute of Korea, Vol. 22, No. 9, pp. 115-122 (in Korean).
  22. Oh, J. S., Mun, G. J., Baeg, M. J. and Soh, Y. S.(1998), Properties of artificial aggregate using fly ash and application of it in concrete, Proceedings of Architectural Institute of Korea, Vol. 18, No. 2, pp. 569-574 (in Korean).
  23. Oh, Y. I, Kim, K. G. and Shin, E. C.(2001), Geotechnical characteristics and environmental effect of reclaimed land by utilizing waste gypsum, Journal of KSCE, Vol. 21, No. 1-C, pp. 19-26 (in Korean).
  24. Pericleous, M. I. and Metcalf, J. B.(1996), Resilient modulus of cement stabilized phosphogypsum, Journal of Materials in Civil Engineering, Vol. 8, No. 1, pp. 7-10. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:1(7)
  25. Shen, W., Mingkai Zhou, Wei Ma, Jinqiang Hu and Zhi Chi (2009), Investigation on the application of steel slag, fly ash, phosphogypsum solidified material as road base material, Journal of Hazardous Materials, Vol. 164, Issue 1, pp. 99-104. https://doi.org/10.1016/j.jhazmat.2008.07.125
  26. Wrench, B. P. and Blight, G. E.(1985), Compressibility of neutralized phosphogypsum, Proceeding of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, Vol. 3, pp. 1321-1326.
  27. Yeosu National University(2001), Research for environmental friendly artificial aggregate using phosphogypsum, Industrial Technology and Development Institute, 153 p. (in Korean).