• Title/Summary/Keyword: 화강암 석산

Search Result 17, Processing Time 0.026 seconds

Orientations of Vertical Rift and Grain Planes in Mesozoic Granites, Korea (국내의 중생대 화강암류에서 발달하는 수직의 1번 및 2번 면의 방향성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.1 s.47
    • /
    • pp.12-26
    • /
    • 2007
  • We have studied orientational characteristics of vertical rift and grain planes developing in 108 quarries for Mesozoic granites. Orientations of these planes vary in different localities. In general, orientations of these planes are predominantly NNE in South Korea. From the regional distribution chart, orientations of these planes show three dominant sets in terms of frequency orders: (1) $N2{\sim}10^{\circ}E(1st-order),\;(2)\;N15{\sim}25^{\circ}E(2nd-order),\;(3)\;N45{\sim}70^{\circ}E,\;N10{\sim}30^{\circ}W\;and\;N70{\sim}80^{\circ}W(3rd-order)$. These granite quarries are classified by the relative difference in the easiness of rock splitting between horizontal and vertical quarrying planes into: R-type, G-type, and H-type. The results showed that quarries for Triassic granites belong to R and G-types;those for Jurassic granites belong to R, G and H-types. In addition, quarries for Cretaceous granites belong mainly to R-type. Among these quarry types, the most diverse type was identified in the quarries for Jurassic granites. R-type (77.8%) shows a higher distribution ratio compared with G and H-types (22.2%). In general, anisotropy of physical properties is found in granitic rocks and there exists close correlation between orientations of granitic rock splitting planes and those of the open microcracks. Meanwhile, it has been reported that preferred orientations of open microcracks suggest maxinum principal stress orientations.

Determination of Rock Cleavages Using AMS (Anisotropy of Magnetic Susceptibility): a Case Study on the Geochang Granite Stone, Korea (대자율이방성(AMS) 분석을 통한 석재 결의 파악: 거창 화강석에서의 사례 연구)

  • Cho, Hyeongseong;Kim, Jong-Sun;Kim, Kun-Ki;Kang, Moo-Hwan;Sohn, Young Kwan;Lee, Youn Soo;Jwa, Yong-Joo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.209-231
    • /
    • 2015
  • In granite quarry, stones are generally quarried along easily separating planes called as 'rock cleavage'. Because orientation and characteristics of the rock cleavage are directly involved with easy quarrying, it is the most important factor on selecting a direction of digging. Using AMS (anisotropy of magnetic susceptibility), we attempt to interpret rock fabrics in Geochang Granite Stone (JS, SD, AR, GD, BW, MD quarry) and discuss about determination of rock cleavages and correlation between the rock fabrics and cleavages. Based on mean susceptibility, thermo-susceptibility curves, and hysteresis parameters, Ti-poor MD and/or PSD magnetites are the main contributor to AMS of the granite stones. The systematic magnetic foliations with sub-vertical dip angle are developed in the whole granite quarries. In most of the granite quarries, the magnetic foliations are significantly consistent with grain plane. In the BW quarry, which has higher $P_J$ values than the others, the magnetic foliations coincide exceptionally with rift plane. These results suggest that rock cleavages in granite stone are related to rock fabrics meaning shape and spatial arrangement of crystals. Magnetic fabrics analysis using AMS method, therefore, can be a quantitative and effective tool for determination of rock cleavages in granite quarry.

Spatial Distribution of the Dimension Stone Quarries in Korea (국내 석재산지의 지역별 분포유형과 특성)

  • Lee, Choon-Oh;Hong, Sei-Sun;Lee, Byeong-Tae;Kim, Gyeong-Soo;Yun, Hyun-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.3 s.45
    • /
    • pp.154-166
    • /
    • 2006
  • Though there are more than 600 active and non-active dimension stone quarries in Korea, most quarries are small-scaled and non-active. Main dimension stone belt in Korea is distributed in the Wonju-jecheon-Mungyeong-Geochang-Jinan-Nanwon-Geogumdo area with NNE direction, which occupies about 50% of domestic dimension stone quarries. The other dimension stone belts occur in the Gangyeong-Iksan-Gimje area, the Pocheon-Ujeongbu area and the Boryeong area. The dimension stones in Korea have been produced from at least fifteen rock types: granite, diorite, syenite, gabbro, homblendite, basalt andesite, rhyolite, tuff felsite, sandstone, marble, gneiss, schist and slate. However, seven or eight rock types such as granite, diorite and marble are currently produced. The dimension stones are quarried out 87% from plutonic rocks (mainly granite and diorite), 6% from sedimentary rocks (mainly sandstone), and 3% from metamorphic rocks (mainly marble). Main rock types of the dimension stones are variable with respect to their production locality. In the Jeollanam-do area, most dimension stones are produced from diorite. Marble is mainly produced from the Gangwon-do and Chungcheongbuk-do areas. Black sandstone is exclusively quarried out from the Chungcheongnam-do area. Granite is most abundant dimension stone in Korea. Above 50% of the domestic dimension stones are medium-grained to coarse-grained granitic rocks, but fine-grained granite dimension stones have 10% of distribution. The color of the dimension stone varies with rock types. Most granite dimension stones have dominant colors of whitish gray and gray, which are produced from the Wonju, Gapyeong, Iksan, Namwon and Geochang areas. Pink-colored granites are rarely produced from the Mungyeong area.

Geology and Distribution of Crushed Aggregate Resources in Korea (국내 골재석산의 분포와 유형 분석)

  • Hong Sei Sun;Lee Chang Bum;Park Deok Won;Yang Dong Yun;Kim Ju Yong;Lee Byeong Tae;Oh Keun Chang
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.555-568
    • /
    • 2004
  • The demand of aggregate resources in Korea has been increased with a rapid economic growth since the 1980s. About 25% of the total aggregate production is derived from riverine aggregates, 20% to 25% from marine sands, 40% to 45% from crushed aggregate and the rest 5% to 15% from old fluvial deposits. The abundance of crushed coarse aggregates varies in the uniform distribution of country, but in general it can be concentrated in the most densely populated areas, five main cities. Typical rock types of the Korean crushed stones are classified as plutonic rocks of 27%, metamorphic rocks of 32%, sedimentary rocks and volcanic rocks of 18%, respectively. The most abundant coarse aggregate used in the country is obtained from granite (25% of total) and subordinately gneiss (20%), sandstone (10%) and andesite (10%). Although rock types using as dimension stone are only fifteen, those as aggregate amount up to twenty nine rocks. These rocks consist of plutonic rocks such as granite, syenite, diorite, aplite, porphyry, felsite. dike and volcanic rocks such as rhyolite, andesite, trachyte, basalt, tuff, volcanic breccia and metamorphic rocks such as gneiss, schist, phyllite, slate, meld-sandstone, quartzite, hornfels, calc-silicate rock, amphibolite. And sandstone, shale, mudstone, conglomerate, limestone, breccia, chert are main aggregate sources in tile sedimentary rocks. The abundance of plutonic rocks is the highest in Chungcheongbuk-do, and decreases as the order of Jeollabuk-do, Gangwon-do and Gyeonggi-do. In Jeollanam-do, volcanic aggregates occupy above 50%, on the contrary sedimentary aggregates are above 50% in Gyeongsangnam-do.

Application of Radar Survey to a Granite Quarry Mine (화강암 석산 지역에서의 레이다 탐사의 적용)

  • Seol Soon-Jee;Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 2001
  • To delineate the inhomogeneities including fractures and to estimate the freshness of rock borehole radar consisting of the reflection and tomography methods, and GPR surveys were conducted at a granite quarry mine. The borehole reflection survey using the direction finding antenna was also conducted to get the spatial orientations of reflectors. 20 MHz was adopted as the central frequency for the borehole radar reflection and tomography surveys and 100 MHz was for GPR. Through the interpretation of borehole reflection data using dipole and direction finding antenna as well as GPR images, which are good agreement with each other, we could determine the orientation of the major fractures in three dimensional way. Parts of travel time curves of tomography data showed the anisotropy, which is uncommon in granite quarry. By comparing the tomography data and TeleViewer images, the anisotropy effect in this area are closely related to fine fissures aligned in the same direction. The area confined by the two fractures, MF2 and MF5, might consist of the most fresh granite in the surveyed area, which was concluded from the borehole radar tomography, and GPR images as well as the distribution of anisotropy.

  • PDF

The studies of the granite landforms in South Korea (한국의 화강암 지형에 대한 연구)

  • KANG, Tay-Gyoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.1-15
    • /
    • 2011
  • This work is to review the granite landforms studies by Korean geographers. It is verified that geomorphlogical characteristics of granite present landscapes characterized by 1) in case of mountains, are difficultly or irregularly weathered, so as to develop rocky forms such as domes, cliffs, and tors ; 2) in case of stream valley that is inter-massif lowland, low relief hills and flood plains with alluvium. All these facts owe to the difference of weathering mode granite properties. The granite hills and alluvial plains of southwestern coastal parts in Korean peninsula is low undulatory and large owing not only to the existence of highly weathered granitic regolith, but also to frequent flooding. Cultivated brownish field, orchard, meadow and forest are located at granite hills. On the other hand paddy rice field at granite alluvial plains. Korean peninsula have endured erodible geomorphlogical processes since Miocene when warping it up. Therefore many intermontane basins are located on the weathered granite areas which are surrounded by mountains composed of much less Precambrian gneiss complex. In fact, intermontane basin is mainly linear fault-line valley. The landforms of the intermontane basins are characterized by gentle piedmont slopes, alluvial fans, fluvial terraces and alluvial plains.

Evaluation of the Quality of the Underground Dimension Stones -The Example of the Granite Quarry in the Geochang Area- (지하심부 석재자원의 품질평가 - 거창지역 화강암 석재석산의 예 -)

  • Hong, Sei Sun;Lee, Choon Oh;Lee, Jin Young;Kim, Yu Seong
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.233-252
    • /
    • 2015
  • This research are systematic and scientific approaches to obtain the distribution, occurrence and quality of granite stone for building purposes. The process of dimension stone exploration must be carried out to know the underground potentiality of granitic body using the basic data collection and study, field mapping, detailed drilling survey, televiewer technique, and physical and chemical tests in the Geochang area. Televiewer data obtained in drilling boreholes can be accurately distinguished from the discontinuous face, strike and inclination, extension which is difficult to obtain in a core logging. 3D joint images will be helpful to establish a quarry exploitation plan because the 3D joint images give quite accurate information down to depth below the outcrop surface. Through the process of the quality estimation on the Geochang site, the proven reserve estimated as dimensional building stone are calculated with good quality in petrologic and physical properties.

Characteristics of the Rock Cleavage in Jurassic Granite, Hapcheon (합천지역의 쥬라기 화강암에 발달된 결의 특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.219-230
    • /
    • 2011
  • Jurassic granite from Hapcheon was analysed with respect to the characteristics of the rock cleavage. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. The planes of principal set of microcracks are parallel to the rift plane and those of secondary set are parallel to the grain plane. These rift and grain microcracks are mutually near-perpendicular on the hardway planes. Consequently the rock cleavage of Jurassic granite from the studied quarry can be related to the preferred orientation of microcracks. Microcrack parameters such as number, length and density show an order of rift > grain > hardway. These results indicate a relative magnitude of the rock cleavage. Meanwhile, brazilian tensile strengths were measured with respect to the six directions. The results revealed a strong correlation between mechanical property with microcrack parameters.

Characteristics of Microcrack Orientations in Mesozoic Granites and Granitic Dyke Rocks from Seokmo-do, Ganghwa-gun (강화군 석모도 일대의 중생대 화강암류 및 화강암질 암맥류에서 발달하는 미세균열의 분포특성)

  • Park, Deok-Won;Lee, Chang-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.129-143
    • /
    • 2007
  • We have studied orientational characteristics of microcracks in Mesozoic granites and granitic dyke rocks from Seokmo-do, Ganghwa-gun. Microcracks on horizontal surfaces of rock samples from 14 sites were investigated by image processing. Orientations of these microcracks compared with those of 18 sets of joints in Mesozoic granites from Seokmo-do. From the related chart, microcrack sets show strong preferred orientations which obviously are coincident with the direction of vertical common joints. It follows that the formation of macroscopic joints may be the results of further growth and step-wise jointing of pre-existing microcracks. Orientations of microcracks from this result also compared with those of vertical rift and grain planes for Jurassic and Cretaceous granite quarries in Korea. As shown in the distribution chart, the congruence of distribution pattern among microcracks and rift and grain planes suggests that similar microcrack systems probably occur regionally in Jurassic and Cretaceous granites from Korea. In particular, whole domain of the distribution chart was divided into 16 groups in terms of the phases of distribution of microcracks and planes. These microcrack sets in each domains construct complex composite microcrack systems which have formed progressively by different geologic processes and under varying conditions.