Browse > Article

Orientations of Vertical Rift and Grain Planes in Mesozoic Granites, Korea  

Park, Deok-Won (Groundwater & Geothermal resources Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of the Petrological Society of Korea / v.16, no.1, 2007 , pp. 12-26 More about this Journal
Abstract
We have studied orientational characteristics of vertical rift and grain planes developing in 108 quarries for Mesozoic granites. Orientations of these planes vary in different localities. In general, orientations of these planes are predominantly NNE in South Korea. From the regional distribution chart, orientations of these planes show three dominant sets in terms of frequency orders: (1) $N2{\sim}10^{\circ}E(1st-order),\;(2)\;N15{\sim}25^{\circ}E(2nd-order),\;(3)\;N45{\sim}70^{\circ}E,\;N10{\sim}30^{\circ}W\;and\;N70{\sim}80^{\circ}W(3rd-order)$. These granite quarries are classified by the relative difference in the easiness of rock splitting between horizontal and vertical quarrying planes into: R-type, G-type, and H-type. The results showed that quarries for Triassic granites belong to R and G-types;those for Jurassic granites belong to R, G and H-types. In addition, quarries for Cretaceous granites belong mainly to R-type. Among these quarry types, the most diverse type was identified in the quarries for Jurassic granites. R-type (77.8%) shows a higher distribution ratio compared with G and H-types (22.2%). In general, anisotropy of physical properties is found in granitic rocks and there exists close correlation between orientations of granitic rock splitting planes and those of the open microcracks. Meanwhile, it has been reported that preferred orientations of open microcracks suggest maxinum principal stress orientations.
Keywords
vertical rift and grain plane; granite fuauy; orientation; quawy type; open microcrack;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 서용석, 정교철, 1999, 수침삼축압축하에서 관찰되는 화강암의 미세 파괴. 대한지질공학회지, 9, 243-251
2 이병주, 김정찬, 김유봉, 조등룡, 최현일, 전희영, 김복철, 1997, 한국지질도(1:250,000), 광주도폭 및 설명서. 과학 기술부, 82 p
3 Nover, G., Buntebarth, G., Kern, H., Pohl, G., Schopper, JR., Shult, A. & Will, G., 1989, Petrophysical investigations on core samples of the KTB Scientific Drilling 1, 135-142
4 Seo, Y. S., Jeong, G C., Kim, J. S. and Ichikawa, Y., 2002, Microscopic observation and contact stress analysis of granite under compression. Engineering Geology, 63, 259-275   DOI   ScienceOn
5 박덕원, 2005, 포천화강암내 미세균열의 조직특성. 한국지질자원연구원 논문집, 9, 3-13
6 박덕원, 김형찬, 이창범, 홍세선, 장세원, 이철우, 2004, 포천지역의 쥬라기 화강암에 발달된 결의 특성 한국암석 학회지, 13, 133-141
7 황재하, 김동학, 조등룡, 송교영, 1996, 한국지질도 (1:250,000), 안동도폭 및 설명서. 과학기술부, 67 p
8 Holzhausen, G. R., 1989, Origin of sheet structure, 1. Morphology and boundary conditions. Engineering Geology, 27, 225-275   DOI   ScienceOn
9 Thill, R E., Williard, R. J. and Bur, T. R., 1969, Correlation of longitudinal velocity variation with rock fabric. Journal of Geophysical Research, 74, 4898-4909
10 김영화, 장보안, 박상욱, 1996, 양산단층 지역의 화강암체 내에 분포하는 열린 미세균열과 경상분지의 고응력장. 대한지질학회지, 32, 367-378
11 박덕원, 서용석, 정교철, 김영기, 2001, 주라기 화강암내 발달하는 결의 현미경학적 분석. 대한지질공학회지, 11, 51-62
12 Krantz, R.L., 1983, Microcracks in rocks. Tectonophysics, 100, 449-471   DOI   ScienceOn
13 Ljungner, E., 1930, Spaltentektonik und morphologie der schwedischen Skagerrak-Kueste. Bull. Geol. Inst. Univ. Uppsala, 21, 478 p
14 이병주, 김유봉, 이승렬, 김정찬, 강필종, 최현일, 진명식, 1999, 한국지질도(1:250,000), 서울-남천점도폭 및 설명서. 과학기술부, 64 p
15 Dale, T.N., 1923, The commercial granites of New England. U.S. Geological Survey Bulletin, 738, 488
16 Peng, S. and Johnson, A. M., 1972, Crack growth and faulting in cylindrical specimens of chemsford granite. International Journal of Rock Mechanics and Mining Science, 9, 37-86   DOI   ScienceOn
17 Rodrigues, F. P., 1966, A anisotrophy of granites. Proc, 1st. Soc. Rock Mech., Lisbon, 1, 721-731
18 이병대, 장보안, 윤현수, 이한영, 진명식, 1999, 문경지역에 분포하는 화강암의 미세균열 발달특성. 한국암석학회지, 8, 24-33
19 이병주, 김동학, 최현일, 기원서, 박기화, 1996, 한국지질도 (1:250,000), 대전도폭 및 설명서. 과학기술처, 59 p
20 Herrmann, O., 1916, Steinbruch-Industrie und Steinbruch-Geologie. Borntraeger, Berlin, 2nd ed., 312 p
21 Duvall, W. I., 1965, The effect of anisotropy on the determination of dynamic elastic constants of rock. Trans. Soc. Min. Eng. AIME, 232, dec., 309-316
22 Lespinasse, M., Pecher, A., 1986, Microfracturing and regional stress field:a study of the preferred orientations of fluid-inclusion planes in a granite from the Massif Central, France. Jounal of Structual Geology, 8, 169-180   DOI   ScienceOn
23 Plumb, R., Engelder, T. and Yale, D., 1984 b, Near-surface in-situ stress, 3. Correlation with microcrack fabric within the New Hampshire. Journal of Geophysical Research, 89, 9350-9364   DOI
24 Siegesmund, S., Kern, H., Vollbracht, A., 1991, The effect of oriented intragranular and boundary cracks on seismic velocities in an ultramylonite. Tectonophysics, 186, 241-251   DOI   ScienceOn
25 장보안, 오선환, 2001, 포천화강암내 발달한 결의 역학적 이방성과 미세균열의 상관성. 대한지질공학회지, 11, 191-203
26 Douglass, P. M. and Voight, B., 1969, Anisotropy of granites: A reflection of microscopic fabric. Geotechnique, 19, 376-398   DOI
27 Jahns, R. H., 1943, Sheet structure in granites: its origin and use as a measure of glacial erosion in New England. Journal of Geology, 51, 71-98   DOI
28 Solberg, P. H., 1975, The influence of microcracks on sheet jointing in four New England granites. Abstract Transamerica Geophysics Union, 56, 444
29 Sasada, M. and Nishoka, Y., 2004, Tsukuba and Inada areas, Field guide book. 41st CCOP Annual Session
30 Wise, D. U., 1964, Microjointing in basement, middle Rocky mountains of Montana and Wyoming. Geological Society of America Bulletin, 75, 287-292   DOI
31 Tremmmel, E. and Widmann, R., 1970, Deformation properties of gneiss. Proc. 2nd Congo Int. Soc. Rock Mech., Belgrade, 1, 567-575
32 Simmons, G and Richter, D., 1976, Microcrack in rock, in R. J. C. Sterns, ed., The physics and chemistry of minerals and rocks. Wieley-Interscience, Newyork, N. Y., 105137
33 Peng, S., 1970, Fracture and failure of Chemsford granite. PhD. dissertation, Dept. Mineral Engineering, Standford University
34 Bur, T. R. and Hjelmstad, K. E., 1970, Elastic and attenuation symmetries of simulated lunar rocks. Icarus 13, 44
35 Vollbrecht, A., Rust, S. and Weber, K., 1991, Development of microcracks in granites during cooling and uplift:examples from the Variscan basement in NE Bavaria, Germany. Journal of Structual Geology, 13, 787-799   DOI   ScienceOn
36 Tapponnier, P. and Brace, W. F., 1976, Development of stress-induced microcracks in Westerly granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 13, 103-111   DOI   ScienceOn
37 Osborne, F. F., 1935, Rift, grain and hardway in some pre-Cambrian granite, Quebec. Economic Geolology, 30, 540-551   DOI
38 Wise, D. U., 2005, Rift and grain in basement:thermally triggered snapshots of stress fields during erosional unroofing of the Rock mountains of Montana and Wyoming. Rock mountain geology, 40, 193-209   DOI
39 Nishiyama, T., Chen, Y., Kusuda, Ito, T., Kaneko, K., Kita, H. and Sato, T., 2002, The examination of fracturing process subjected to triaxial compression test in Inada granite. Engineering Geology, 66, 257-269   DOI   ScienceOn
40 김정찬, 고희재, 이승렬, 이창범, 최성자, 박기화, 2001, 한국지질도(1:250,000), 강릉-속초도폭 및 설명서. 한국지질자원연구원, 76 p
41 Thill, T. E., Bur, T. R. and Steckley, R. C., 1973, Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 10, 535-557   DOI   ScienceOn
42 김동학, 황재하, 박기화, 송교영, 1998, 한국지질도 (1:250,000), 부산도폭 및 설명서. 과학기술처, 62 p