DOI QR코드

DOI QR Code

Characteristics of the Rock Cleavage in Jurassic Granite, Hapcheon

합천지역의 쥬라기 화강암에 발달된 결의 특성

  • Park, Deok-Won (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 박덕원 (한국지질자원연구원 지구환경연구부)
  • Received : 2011.12.08
  • Accepted : 2011.12.23
  • Published : 2011.12.31

Abstract

Jurassic granite from Hapcheon was analysed with respect to the characteristics of the rock cleavage. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. The planes of principal set of microcracks are parallel to the rift plane and those of secondary set are parallel to the grain plane. These rift and grain microcracks are mutually near-perpendicular on the hardway planes. Consequently the rock cleavage of Jurassic granite from the studied quarry can be related to the preferred orientation of microcracks. Microcrack parameters such as number, length and density show an order of rift > grain > hardway. These results indicate a relative magnitude of the rock cleavage. Meanwhile, brazilian tensile strengths were measured with respect to the six directions. The results revealed a strong correlation between mechanical property with microcrack parameters.

합천지역의 쥬라기 화강암에 대하여 결의 특성에 대한 분석을 실시하였다. 미세균열의 분포상은 박편의 확대사진(${\times}6.7$)에서 잘 확인되었다. 일차 우세 미세균열은 1번 면에 평행하고 이차 우세 미세균열은 2번 면에 평행하다. 이들 1번 결과 2번 결을 형성하는 미세균열은 3번 면상에서 상호 거의 수직을 이룬다. 결과적으로 연구대상 석산에서 채취한 쥬라기 화강암에서 발달하는 결은 미세균열의 배향성과 관련이 있다. 빈도수, 길이 및 밀도와 같은 미세균열의 매개변수들은 1번결 > 2번 결 > 3번 결의 순서로 우세하게 나타난다. 이러한 결과는 결의 상대적인 강도를 지시한다. 한편 6개 방향에 따른 압열 인장강도가 측정되었다. 암석의 강도와 상기한 미세균열 매개변수들 사이에는 밀접한 상관성을 보이고 있다.

Keywords

References

  1. 김동학, 황재하, 박기화, 송교영, 1998, 한국지질도(1:250,000), 부산도폭. 한국자원연구소, 62p
  2. 박덕원, 2007, 국내의 중생대 화강암류에서 발달하는 수직의 1번 및 2번 면의 방향성. 한국암석학회지, 16, 12-26.
  3. 박덕원, 김형찬, 이창범, 홍세선, 장세원, 이철우, 2004, 포천지역의 쥬라기 화강암에 발달된 결의 특성. 한국암석학회지, 13, 133-141.
  4. 서용석, 2000, 화강암의 응력완화현상에 관한 수침삼축시험. 대한지질공학회, 10, 217-223.
  5. 서용석, 정교철, 1999, 수침삼축압축하에서 관찰되는 화강암의 미세 파괴. 대한지질공학회, 9, 243-251.
  6. 이병대, 장보안, 윤현수, 이한영, 진명식, 1999, 문경지역에 분포하는 화강암의 미세균열 발달특성. 한국암석학회지, 8, 24-33.
  7. 장보안, 김영화, 김재동, 이찬구, 1998, 피로하중에 의한 포천화강암의 미세균열 발달특성. 대한지질공학회, 8, 275-284.
  8. 장보안, 오선환, 2001, 포천화강암내 발달한 결의 역학적 이방성과 미세균열의 상관성, 대한지질공학회, 11, 191-203.
  9. Akesson, U., Hanssen, J. and Stigh, J., 2003, Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Engineering Geology, 72, 131-141.
  10. Chae, B.G. and Seo, Y.S., 2011, Homogenization analysis for estimating the elastic modulus and representative elementary volume of Inada granite in Japan, Geosciences Journal, 15, 387-394. https://doi.org/10.1007/s12303-011-0035-7
  11. Douglass, P.M. and Voight, B., 1969, Anisotropy of granites: A reflection of microscopic fabric. Geotechnique, 19, 376-398. https://doi.org/10.1680/geot.1969.19.3.376
  12. Hadley K., 1976, Comparison of calculated and observed crack densities and seismic velocities of Westerly granite. J. Geophys. Res., 81, 3484-3494. https://doi.org/10.1029/JB081i020p03484
  13. Kranz, R.L., 1979a, Crack growth and development during creep of Barre granite. Int. J. Rock Mech. Min. Sci., 16, 23-35.
  14. Kranz, R.L., 1980, The effet of confing pressure and stress difference on static fatigue of granite. J. Geophys., 85, 1854-1866. https://doi.org/10.1029/JB085iB04p01854
  15. Kranz, R.L., 1983, Microcrack in rocks:a review. Tectonophysics, 100, 449-480. https://doi.org/10.1016/0040-1951(83)90198-1
  16. Nishiyama, T., Chen, Y., Kusuda, Ito, T., Kaneko, K., Kita, H. and Sato, T., 2002, The examination of fracturing process subjected to triaxial compression test in Inada granite. Engineering Geology, 66, 257-269. https://doi.org/10.1016/S0013-7952(02)00046-7
  17. Peng, S.S and Johnson, A.M., 1972, Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int. J. Rock Mech. & Min. Sci., 9, 37-86. https://doi.org/10.1016/0148-9062(72)90050-2
  18. Plumb, R., Engelder, T. and Yale, D., 1984 b, Near-surface insitu stress, 3. Correlation with microcrack fabric within the New Hampshire Granites. J. Geophys. Res., 89, 9350-9364. https://doi.org/10.1029/JB089iB11p09350
  19. Segall, P., 1984, Formation and growth of extentional fracture sets. Geol. Soc. Am. Bull., 95, 454-462. https://doi.org/10.1130/0016-7606(1984)95<454:FAGOEF>2.0.CO;2
  20. Segall, P. and Pollard D. D., 1983, Joint formation in granitic rock of the Sierra Nevada. Geol. Soc. Am. Bull., 94, 563-575. https://doi.org/10.1130/0016-7606(1983)94<563:JFIGRO>2.0.CO;2
  21. Seo, Y.S., Jeong, Kim, G.C. and Ichikawa, Y., 2002, Microscopic observation and contact stress analysis of granite under compression. Engineering Geology, 63, 259-275. https://doi.org/10.1016/S0013-7952(01)00086-2
  22. Seo, Y.S. and Seico, Y., 1999, Crack generation and propagation during stress relaxation of crystalline rock under water saturated uniaxial condition. J. Soc. Mat. Sci., Japan, 48, 1255-1262. https://doi.org/10.2472/jsms.48.1255
  23. Simmon, G., Todd, T. and Baldridge, W.S., 1975, Toward a quantitative relationship between elastic properties and cracks in low porosity rocks. Am. J. Sci., 275, 318-345. https://doi.org/10.2475/ajs.275.3.318
  24. Sprunt, E. and Brace, W.F., 1974b, Some permanent structural changes in rock due to pressure and temperature. Proc. 3rd Congr. Int. Soc. Rock Mech., II-A, 524-529.
  25. Streckeisen, A.L., 1976, To each plutonic rocks and its proper name. Earth Sci. Rev., 12, 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
  26. Takemura, T., Golshani, A., Oda, M., Suzuki, K., 2003, Preferred orientation of microcracks in granite and their relation with anisotropic elasticity. Int. J. Rock Mech. & Min. Sci., 40, 443-454. https://doi.org/10.1016/S1365-1609(03)00014-5
  27. Takemura, T., Oda, M., 2004, Stereology-based fabric analysis of microcracks in damaged granite. Tectonophysics, 387, 131-150. https://doi.org/10.1016/j.tecto.2004.06.004
  28. Tapponier, P. and Brace, W.F., 1976, Development of stressinduced microcracks in Westerly granite. Int. J. Rock Mech. Min. Sci., 13, 103-112. https://doi.org/10.1016/0148-9062(76)91937-9
  29. Thill, T.E., Bur, T.R. and Steckley, R.C., 1973, Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 10, 535-557. https://doi.org/10.1016/0148-9062(73)90004-1
  30. Thill, R.E., Williard, R.J. and Bur, T.R., 1969, Correlation of longitudinal velocity variation with rock fabric. J. Geophys. Res., 74, 4898-4909.
  31. Vollbrecht, A., Rust, S. and Weber, K., 1991, Development of microcracks in granites during cooling and uplift: examples from the Variscan basement in NE Bavaria, Germany. J. Struct Geol., 13, 787-799. https://doi.org/10.1016/0191-8141(91)90004-3
  32. Wawersik, W.R. and Brace, W.F., 1971, Post-failure behaviour of a granite and diabase. Rock Mech., 3, 61-85. https://doi.org/10.1007/BF01239627
  33. Wong, T.-F., 1982, Micromechanics of faulting in Westerly granite. Int. J. Rock Mech. Min. Sci., 19: 49-64.

Cited by

  1. Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (III) vol.25, pp.4, 2016, https://doi.org/10.7854/JPSK.2016.25.4.311
  2. Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (I) vol.25, pp.1, 2016, https://doi.org/10.7854/JPSK.2016.25.1.13
  3. Determination of Rock Cleavages Using AMS (Anisotropy of Magnetic Susceptibility): a Case Study on the Geochang Granite Stone, Korea vol.24, pp.3, 2015, https://doi.org/10.7854/JPSK.2015.24.3.209
  4. Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (II) vol.25, pp.2, 2016, https://doi.org/10.7854/JPSK.2016.25.2.151
  5. Characteristics of the Rock Cleavage in Jurassic Granite, Geochang vol.24, pp.3, 2015, https://doi.org/10.7854/JPSK.2015.24.3.153
  6. Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths vol.24, pp.3, 2015, https://doi.org/10.7854/JPSK.2015.24.3.165