Browse > Article

Characteristics of Microcrack Orientations in Mesozoic Granites and Granitic Dyke Rocks from Seokmo-do, Ganghwa-gun  

Park, Deok-Won (Groundwater & Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
Lee, Chang-Bum (Groundwater & Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of the Petrological Society of Korea / v.16, no.3, 2007 , pp. 129-143 More about this Journal
Abstract
We have studied orientational characteristics of microcracks in Mesozoic granites and granitic dyke rocks from Seokmo-do, Ganghwa-gun. Microcracks on horizontal surfaces of rock samples from 14 sites were investigated by image processing. Orientations of these microcracks compared with those of 18 sets of joints in Mesozoic granites from Seokmo-do. From the related chart, microcrack sets show strong preferred orientations which obviously are coincident with the direction of vertical common joints. It follows that the formation of macroscopic joints may be the results of further growth and step-wise jointing of pre-existing microcracks. Orientations of microcracks from this result also compared with those of vertical rift and grain planes for Jurassic and Cretaceous granite quarries in Korea. As shown in the distribution chart, the congruence of distribution pattern among microcracks and rift and grain planes suggests that similar microcrack systems probably occur regionally in Jurassic and Cretaceous granites from Korea. In particular, whole domain of the distribution chart was divided into 16 groups in terms of the phases of distribution of microcracks and planes. These microcrack sets in each domains construct complex composite microcrack systems which have formed progressively by different geologic processes and under varying conditions.
Keywords
microcrack; horizontal plane; image processing; vertical common joint; rift and grain planes; 16 groups;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 서용석, 정교철, 1999, 수침삼축압축하에서 관찰되는 화강암의 미세 파괴. 대한지질공학회지, 9, 243-251
2 황재하, 김유홍, 2005, 한국지질도(1:50,000), 강화.온수리 도폭 및 설명서, 한국지질자원연구원, 46p
3 Peng, S., 1970, Fracture and failure of Chelmsford granite. Ph. D. dissertation, Dept. Mineral Engineering, Standford University
4 Plurnb, R., Engelder, T. and Yale, D., 1984, Near-surface insitu stress, 3. Correlation with microcrack fabric within the New Hampshire. Journal of Geophysical Research, 89, 9350-9364   DOI
5 Simmons, G. and Richter, D., 1976, Microcrack in rock, in R. J. C. Sterns, ed., The physics and chemistry of minerals and rocks. Wieley-Interscience, Newyork, N. Y., 105-137
6 Solberg, P.H., 1975, The influence of microcracks on sheet jointing in four New England granites. Abstract Transamerica Geophysics Union, 56, 444
7 Tapponnier, P. and Brace, W.F., 1976, Development of stress-induced microcracks in Westerly granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 13, 103-111   DOI   ScienceOn
8 Wise, D.U., 2005, Rift and grain in basement.thermally triggered snapshots of stress fields during erosional unroofmg of the Rocky mountains of Montana and Wyoming. Rocky mountain geology, 40, 193-209   DOI
9 Lespinasse, M., Pecher, A., 1986, Microfracturing and regional stress field:a study of the preferred orientations of fluid-inclusion planes in a granite from the Massif Central, France. Jounal of Structual Geology, 8, 169-180   DOI   ScienceOn
10 박덕원, 김형찬, 이창범, 홍세선, 장세원, 이철우, 2004, 포천지역의 중생대 화강암에 발달된 결의 특성. 한국암석학회지, 13, 133-141
11 장보완, 정해식, 2005, 마산 및 양산 일대의 백악기 화강암류의 아문 미세균열과 유체포유물 연구를 통한 백악기 및 신생대 고응력장 분석. 지질학회지, 41, 59-72
12 정해식, 장보안, 2004, 소백산 육괴 동북부 영주 화강암 내의 아문 미세균열 및 유체포유물을 이용한 중생대 고응력장 연구. 지질학회지, 40, 179-190
13 Seo, Y.S., Jeong, Kim, G.C. and Ichikawa, Y., 2002, Microscopic observation and contact stress analysis of granite under compression. Engineering Geology, 63, 259-275   DOI   ScienceOn
14 장보완, 김정애, 1996, 월악산-속리산 일대 화강암체내에 분포하는 아문 미세균열 및 유체포유물에 의한 중생대 백악기 고응력장. 지질학회지, 32, 291-301
15 장태우, 정재혁, 장천중, 2007, 한반도 동남부 제3기 어일분지 및 와읍분지의 지구조 운동. 대한지질공학회지, 17, 27-40   과학기술학회마을
16 Holzhausen, G.R., 1989, Origin of sheet structure, 1. Morphology and boundary conditions. Engineering geology, 27, 225-275   DOI   ScienceOn
17 Peng, S. and Johnson, A.M., 1972, Crack growth and faulting in cylindrical specimens of chelmsford granite. International Journal of Rock Mechanics and Mining Science, 9, 37-86   DOI   ScienceOn
18 김영화, 장보안, 박상욱, 1996, 양산단층 지역의 화강암체내에 분포하는 열린 미세균열과 경상분지의 고응력장. 대한지질학회지, 32, 367-378
19 박덕원, 2007, 국내의 중생대 화강암류에서 발달하는 수직의 1번 및 2번 면의 방향성. 한국암석학회지, 16, 12-26   과학기술학회마을
20 Nishiyama, T., Chen, Y., Kusuda, Ito, T., Kaneko, K., Kita, H. and Sato, T., 2002, The examination of fracturing process subjected to triaxial compression test in Inada granite. Engineering Geology, 66, 257-269   DOI   ScienceOn
21 Krantz, R.L., 1983, Microcracks in rocks. Tectonophysics, 100, 449-471   DOI   ScienceOn
22 이승구, 김통권, 이진수, 송윤호, 2006, 강화 석모도 화강암류와 온천수의 지구화학: 온천수의 기원규명을 위한 Sr동위원소의 응용. 한국암석학회지, 15, 61-71   과학기술학회마을
23 이준복, 장찬동, 2007, 한반도 남동부의 현생 응력장. 대한지질공학회지, 17, 299-307   과학기술학회마을
24 이병주, 김유봉, 이승렬, 김정찬, 강필종, 최현일, 진명식, 1999, 한국지질도(1:250,000), 서울-남천점도폭 설명서, 과학기술부, 64p
25 Vollbrecht, A., Rust, S. and Weber, K., 1991, Development of microcracks in granites during cooling and uplift: examples from the Variscan basement in NE Bavaria, Germany. Journal of Structual Geology, 13, 787-799   DOI   ScienceOn