Browse > Article
http://dx.doi.org/10.7854/JPSK.2011.20.4.219

Characteristics of the Rock Cleavage in Jurassic Granite, Hapcheon  

Park, Deok-Won (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of the Petrological Society of Korea / v.20, no.4, 2011 , pp. 219-230 More about this Journal
Abstract
Jurassic granite from Hapcheon was analysed with respect to the characteristics of the rock cleavage. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. The planes of principal set of microcracks are parallel to the rift plane and those of secondary set are parallel to the grain plane. These rift and grain microcracks are mutually near-perpendicular on the hardway planes. Consequently the rock cleavage of Jurassic granite from the studied quarry can be related to the preferred orientation of microcracks. Microcrack parameters such as number, length and density show an order of rift > grain > hardway. These results indicate a relative magnitude of the rock cleavage. Meanwhile, brazilian tensile strengths were measured with respect to the six directions. The results revealed a strong correlation between mechanical property with microcrack parameters.
Keywords
Jurassic granite; Rock cleavage; Enlarged photomicrograph; Microcrack parameters;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Peng, S.S and Johnson, A.M., 1972, Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int. J. Rock Mech. & Min. Sci., 9, 37-86.   DOI   ScienceOn
2 Plumb, R., Engelder, T. and Yale, D., 1984 b, Near-surface insitu stress, 3. Correlation with microcrack fabric within the New Hampshire Granites. J. Geophys. Res., 89, 9350-9364.   DOI
3 Segall, P., 1984, Formation and growth of extentional fracture sets. Geol. Soc. Am. Bull., 95, 454-462.   DOI   ScienceOn
4 Segall, P. and Pollard D. D., 1983, Joint formation in granitic rock of the Sierra Nevada. Geol. Soc. Am. Bull., 94, 563-575.   DOI
5 Seo, Y.S., Jeong, Kim, G.C. and Ichikawa, Y., 2002, Microscopic observation and contact stress analysis of granite under compression. Engineering Geology, 63, 259-275.   DOI   ScienceOn
6 Seo, Y.S. and Seico, Y., 1999, Crack generation and propagation during stress relaxation of crystalline rock under water saturated uniaxial condition. J. Soc. Mat. Sci., Japan, 48, 1255-1262.   DOI   ScienceOn
7 Simmon, G., Todd, T. and Baldridge, W.S., 1975, Toward a quantitative relationship between elastic properties and cracks in low porosity rocks. Am. J. Sci., 275, 318-345.   DOI
8 Sprunt, E. and Brace, W.F., 1974b, Some permanent structural changes in rock due to pressure and temperature. Proc. 3rd Congr. Int. Soc. Rock Mech., II-A, 524-529.
9 Streckeisen, A.L., 1976, To each plutonic rocks and its proper name. Earth Sci. Rev., 12, 1-33.   DOI   ScienceOn
10 Takemura, T., Golshani, A., Oda, M., Suzuki, K., 2003, Preferred orientation of microcracks in granite and their relation with anisotropic elasticity. Int. J. Rock Mech. & Min. Sci., 40, 443-454.   DOI   ScienceOn
11 Takemura, T., Oda, M., 2004, Stereology-based fabric analysis of microcracks in damaged granite. Tectonophysics, 387, 131-150.   DOI   ScienceOn
12 Tapponier, P. and Brace, W.F., 1976, Development of stressinduced microcracks in Westerly granite. Int. J. Rock Mech. Min. Sci., 13, 103-112.   DOI   ScienceOn
13 Thill, T.E., Bur, T.R. and Steckley, R.C., 1973, Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 10, 535-557.   DOI   ScienceOn
14 Thill, R.E., Williard, R.J. and Bur, T.R., 1969, Correlation of longitudinal velocity variation with rock fabric. J. Geophys. Res., 74, 4898-4909.
15 Vollbrecht, A., Rust, S. and Weber, K., 1991, Development of microcracks in granites during cooling and uplift: examples from the Variscan basement in NE Bavaria, Germany. J. Struct Geol., 13, 787-799.   DOI   ScienceOn
16 Wawersik, W.R. and Brace, W.F., 1971, Post-failure behaviour of a granite and diabase. Rock Mech., 3, 61-85.   DOI   ScienceOn
17 Wong, T.-F., 1982, Micromechanics of faulting in Westerly granite. Int. J. Rock Mech. Min. Sci., 19: 49-64.
18 김동학, 황재하, 박기화, 송교영, 1998, 한국지질도(1:250,000), 부산도폭. 한국자원연구소, 62p
19 박덕원, 2007, 국내의 중생대 화강암류에서 발달하는 수직의 1번 및 2번 면의 방향성. 한국암석학회지, 16, 12-26.
20 박덕원, 김형찬, 이창범, 홍세선, 장세원, 이철우, 2004, 포천지역의 쥬라기 화강암에 발달된 결의 특성. 한국암석학회지, 13, 133-141.
21 서용석, 2000, 화강암의 응력완화현상에 관한 수침삼축시험. 대한지질공학회, 10, 217-223.
22 서용석, 정교철, 1999, 수침삼축압축하에서 관찰되는 화강암의 미세 파괴. 대한지질공학회, 9, 243-251.
23 이병대, 장보안, 윤현수, 이한영, 진명식, 1999, 문경지역에 분포하는 화강암의 미세균열 발달특성. 한국암석학회지, 8, 24-33.
24 장보안, 김영화, 김재동, 이찬구, 1998, 피로하중에 의한 포천화강암의 미세균열 발달특성. 대한지질공학회, 8, 275-284.
25 장보안, 오선환, 2001, 포천화강암내 발달한 결의 역학적 이방성과 미세균열의 상관성, 대한지질공학회, 11, 191-203.
26 Akesson, U., Hanssen, J. and Stigh, J., 2003, Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Engineering Geology, 72, 131-141.
27 Chae, B.G. and Seo, Y.S., 2011, Homogenization analysis for estimating the elastic modulus and representative elementary volume of Inada granite in Japan, Geosciences Journal, 15, 387-394.   DOI   ScienceOn
28 Douglass, P.M. and Voight, B., 1969, Anisotropy of granites: A reflection of microscopic fabric. Geotechnique, 19, 376-398.   DOI
29 Hadley K., 1976, Comparison of calculated and observed crack densities and seismic velocities of Westerly granite. J. Geophys. Res., 81, 3484-3494.   DOI   ScienceOn
30 Kranz, R.L., 1979a, Crack growth and development during creep of Barre granite. Int. J. Rock Mech. Min. Sci., 16, 23-35.
31 Kranz, R.L., 1980, The effet of confing pressure and stress difference on static fatigue of granite. J. Geophys., 85, 1854-1866.   DOI
32 Kranz, R.L., 1983, Microcrack in rocks:a review. Tectonophysics, 100, 449-480.   DOI   ScienceOn
33 Nishiyama, T., Chen, Y., Kusuda, Ito, T., Kaneko, K., Kita, H. and Sato, T., 2002, The examination of fracturing process subjected to triaxial compression test in Inada granite. Engineering Geology, 66, 257-269.   DOI   ScienceOn