• Title/Summary/Keyword: 혼합정수계획

Search Result 144, Processing Time 0.027 seconds

Decision Making Model for Optimal Earthwork Allocation Planning (최적 토량배분 계획을 위한 의사결정 모델)

  • Gwak, Han-Seong;Seo, Byoung-Wook;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.162-163
    • /
    • 2016
  • This paper presents a mathematical model for optimizing earthwork allocation plan that minimizes earthwork cost. The model takes into account operational constraints in the real-world earthwork such as material-type (i.e., quality level of material) and quantities excavated from cut-sections, required quality of material and quantities for each embankment layer, top-down cutting and bottom-up filling constraints, and allocation orders. These constraints are successfully handled by assuming the rock-earth material as the three dimensional (3D) blocks. The study is of value to project scheduler because the model identifies the optimal earth allocation plan (i.e., haul direction (cut and fill pairs), quantities of soil, type of material, and order of allocations) expeditiously and is developed as an automated system for usability. It is also relevant to estimator in that it computes more realistic earthworks costs estimation. The economic impact and validity of the mathematical model was confirmed by performing test cases.

  • PDF

Study of shortest time artillery position construction plan (최단시간 포병진지 구축계획 수립을 위한 연구)

  • Ahn, Moon-Il;Choi, In-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.89-97
    • /
    • 2016
  • This paper addresses the problem of the construction planning of artillery positions, for which we present an optimization model and propose a heuristic algorithm to solve problems of practical size. The artillery position construction plan includes the assignment of engineers to support the artillery and the schedule of the support team construction sequence. Currently, in the army, managers construct the plan based on their experience. We formulate the problem as a mixed integer program and present a heuristic that utilizes the decomposition of the mixed integer model. We tested the efficacy of the proposed algorithm by conducting computational experiments on both small-size test problems and large-size practical problems. The average optimality gap in the small-size test problem was 6.44% in our experiments. Also, the average computation time to solve the large-size practical problems consisting of more than 200 artillery positions was 79.8 seconds on a personal computer. The result of our computational experiments shows that the proposed approach is a viable option to consider for practical use.

Development of Transmission Expansion Planning Optimization Software Considering Integration of Generation and Transmission Facilities (발·송전설비 통합성을 고려한 전력계통계획 전산모형 프로그램 개발)

  • Hur, Don;Jung, Hae-Sung;Ryu, Heon-Su;Cho, Kong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.16-26
    • /
    • 2010
  • The transmission valuation methodology we propose here captures the interaction between generation and transmission investment decisions recognizing that a transmission expansion can impact the profitability of new resources investment, so that a methodology should consider both the objectives of investors in resources and the transmission planner. In this perspective, this paper purports to develop the mixed-integer programming based transmission expansion planning optimization software, which is well designed to determine the construction time and place of new generators, transmission lines, and substations as well as their capacities to minimize total expenditures related to their investment and operations while meeting technical constraints such as capacity margin, constitution ratio of power resources, spinning reserves, energy and fuel constraints, transmission line outages and losses, pi-type branching, and so on. Finally, Garver's simple system is adopted to validate not simply the accuracy but the efficiency of the proposed model in this paper.

Optimal Rehabilitation Model for Water Distribution Systems (상수도 관망개선의 최적설계)

  • 김중훈
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1993.07a
    • /
    • pp.535-543
    • /
    • 1993
  • 이 논문의 목적은 기존의 상수도 관망을 개선하는데 있어 어느 관을 교체 또는 재생할 것인가와 펌프용량을 얼마나 늘릴 것인가를 결정함으로써 관망내 각 급수지점에서의 요구유량및 수압을 만족시킴은 물론 그에 드는 비용을 최소화시키는 모델을 개발하는데 있다. 이 논문은 관교체 비용, 세관 및 재생 비용, 관보수 비용, 펌핑 비용, 펌프시설 확충비용 등의 다섯가지 비용들을 비교 검토함으로써 의사결정을 하게 된다. 제약조건식으로는 급수 조건식, 에너지 방정식, 수리학적 방정식, 결정 조건식, 한계 조건식, 정수 조건식 등이 있다. 이 모델을 수식화하면 정수혼합 비선형계획법 (mixed-integer nonlinear programming, MINLP) 문제가 된다. 이 문제를 풀기 위해 비선형해법의 GRG (generalized reduced gradient) 방법과 분기와 한계 (banch and bound) 기법을 통한 implicit enumeration 기법을 접목시키는 방법을 제안하였다.

  • PDF

Design of military supply chain network using MIP & Simulation model (혼합정수계획법과 시뮬레이션 기법을 이용한 군 공급사슬망 설계)

  • Lee, Byeong-Ho;Jeong, Dong-Hwa;Seo, Yoon-Ho
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.3
    • /
    • pp.1-12
    • /
    • 2008
  • Design of supply chain network (SCN) is required to optimize every factor in SCN and to provide a long-term and strategic decision-making. A mathematical model can not reflect the real world because design of SCN contains variables and stochastic factors according to status of its system. This paper presents the designing methodology of military SCN using the mathematical model and the simulation model. It constructs SCN to minimize its total costs using the Mixed Integer Programming (MIP) model. And we solve problems of a vehicle assignment and routing through adaptation of experiment parameters repeatedly in the simulation model based on the results from the MIP model. We implement each model with CPLEX and AutoMod, and experiment to reconstruct SCN when the Logistic Support Unit is restricted to support military units. The results from these experiments show that the proposed method can be used for a design of military SCN.

Signal Optimization Model Reflecting Alternative Use of Lanes for Left/Through Traffic at A Signalized Intersection (차로공동이용화를 위한 신호최적화모형 개발 연구)

  • 신언교;홍성표;김동녕
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.75-88
    • /
    • 2001
  • Signal optimization model for alternative use of lanes at a signalized intersection with an stop-line added backward was presented in this paper. The simulation results shot-ed that the traffic fed from the stop-line passed the intersection in each specified phasing interval for left and through traffic. The experimental results indicated that the proposed model was much superior to traditional signal optimization methodology in reducing delay, fuel consumption, and disutility index for delay and stops. The effects for reducing delay were greater than those for doing fuel consumption and disutility index due to the added stop-line. The proposed model is expected to alleviate traffic congestion at intersections, both which have no left turn pocket, and which have large left turn volume. The model is recommended to adapted for intersections spaced long among them with no near driveway.

  • PDF

An Optimization Model Based on Combining Possibility of Boundaries for Districting Problems (경계 결합 가능성 기반 구역설정 최적화 모델)

  • Kim, Kamyoung
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.423-437
    • /
    • 2014
  • Districting is a spatial decision making process to make a new regional framework for affecting human activities. Natural barriers such as rivers and mountains located within a reorganized district may reduce the efficiency of reorganized human activities. This implies that it is necessary to consider boundary characteristics in a districting process. The purpose of this research is to develop a new spatial optimization model based on boundary characteristics for districting problems. The boundary characteristics are evaluated as continuous value expressing the possibility of combining adjacent two basic spatial units rather than a dichotomous value with 1 or 0 and are defined as an objective function in the model. In addition, the model has explicitly formulated contiguity constraints as well as constraints enforcing demand balance among districts such as population and area. The boundary attributes are categorized into physical and relational characteristics. Suitability analysis is used to combine various variables related to each boundary characteristic and to evaluate the coupling possibility between two neighboring basic units. The model is applied to an administrative redistricting problem. The analytical results demonstrate that various boundary characteristics could be modeled in terms of mixed integer programming (MIP).

  • PDF

A Study on the Additional Train Scheduling Method (열차 증편방법에 관한 연구)

  • Kim, Young-Hoon;Rim, Suk-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.313-319
    • /
    • 2014
  • Additional train scheduling is often required to increase the capacity of transporting passengers or freight. In most previous studies on scheduling additional trains, operation time of the added train is designated first; and then the train operation feasibility is examined. However, it is often difficult to apply this approach to domestic trains because the density of the railroad network in Korea is high and various types of trains are in use. Moreover, for freight trains, it is even more challenging because the delay is accumulated due to lower priority whenever a freight train and a passenger train contend for a common segment of rail. In this paper, we address the additional train scheduling problem which entails finding a feasible schedule for an additional train having a fixed departure time or departure time windows. The problem is modeled as a mixed integer programming and a column generation technique is used to solve it.

A Study of Optimal Operation Policy using Risk Evaluation Criteria(I) (for the Daechung Multi-purpose Reservoir) (위험도 평가기준을 적용한 저수지 최적운영방안 연구(I) (대청댐을 중심으로))

  • Park, Myeong-Gi;Kim, Jae-Han;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.37-49
    • /
    • 2002
  • The application of conventional method for optimizing firm water supply and hydro-electric power generation has some limitation during abnormal or extreme drought periods. Hashimoto et al. (1982) suggested there risk evaluation criteria such as reliability, resilience, and vulnerability. These three criteria have been incorporated into a mixed-integer programming model for evaluating the possible performance of water- supply reservoir (Moy et al., 1986; Srinivasan et al., 1999). However, till now, these kind of researches have been conducted only for water-supply reservoir. Therefore there have been no other study for multi-purpose dam including hydro-electric power generation. This study presents an improved formulation of the previous model for evaluating a multi-purpose reservoir system operation considering water supply and hydro-electric power generation. The modified model was applied to the Daechung multi-purpose reservoir system in the Keum river basin to demonstrate the efficiency of the improved formulation.

Yard Crane Dispatching for Remarshalling in an Automated Container Terminal (자동화 컨테이너 터미널에서 이적작업을 위한 장치장 크레인 작업할당)

  • Bae, Jong-Wook;Park, Young-Man
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.665-671
    • /
    • 2012
  • A remarshalling is studied as an important operational strategy in an automated container terminal to enhance the productivity of container handling. This means the rearrangements of the containers scattered at a vertical yard block. The dispatching problem for remarshalling is selecting the remarshalling operation considering the available operation time and deciding the operation sequencing to maximize the effectiveness of remarshalling. This study develops the optimal mathematical model for yard crane dispatching problem with mixed integer program and explains dispatching problem using an example. However it is difficult to apply this model to a field problem because of its computational time. Therefore, we compare the representative 5 dispatching rules for real world adaption. In a numerical experiment, maximum weight ratio(MR) rule shows an overall outstanding performance.