• 제목/요약/키워드: 형광 센서막

검색결과 10건 처리시간 0.022초

산성 용액의 pH를 감지할 수 있는 형광 센서막 (A Fluorescent Sensor Film for Detecting pH of Acidic Solutions)

  • 민재영;김형진
    • 대한화학회지
    • /
    • 제64권2호
    • /
    • pp.74-78
    • /
    • 2020
  • 산성 영역에서 작동하는 고감도 형광 pH 센서막을 제조하기 위하여 실란화된 유리 표면 상에 push-pull 공액 염료(DCMP)를 공유결합에 의해 고정화하였다. DCMP 유도체(DCMA), 2-hydroxyethyl methacrylate (HEMA)및 triethylene glycol dimethacrylate의 혼합물을 광개시 공중합하여 pH 감응성 형광센서막을 제조하였다. 분광학적 측정 결과, pH 2.0-5.0 사이에서 pH가 증가함에 따라 센서막의 흡광도가 증가하였으며, 같은 pH 범위에서 pH 증가에 따라 센서막의 형광 세기도 약 50배 정도 증가하였다. 산성 조건에서 pH 변화에 대한 센서막의 감응은 가역적이고 재현성이 우수하였다. 또한 센서막은 20-50초 사이의 비교적 짧은 감응 시간과 여러 금속이온 존재에서 수소 이온에 대해 높은 선택성을 나타내었다.

광센서를 이용한 수용액 중 납이온의 형광분광법적 정량 (Spectrofluorimetric Determination of Pb ion in Aqueous Media Using an Optical Sensor)

  • 이상학;서효숙
    • 대한화학회지
    • /
    • 제46권5호
    • /
    • pp.407-411
    • /
    • 2002
  • 납이온과 선택적으로 상호작용하는 이온 운반물질(lead ionophore II)과 수소이온과 선택적으로 상호작용하면서 형광을 내는 변색성 이온 운반물질(ETH5294) 및 소수성의 음이온 자리를 포함하는 이온 선택성 광센서를 제조하여 형광분광법으로 수용액 중의 납이온을 정량하는 방법을 연구하였다. 시료용액의 pH,막두께 등이 형광세기에 미치는 영향을 조사하였다. $Na^+$, $K^+$, $Mn^{2+}$$Zn^{2+}$이온 등의 방해이온이 납이온의 정량에 미치는 영향을 조사하였다.본 연구에서 제작한 납이온 선택성 막을 이용하여 얻은 납이온 검정곡선의 직선범위는 5.0${\times}10^-7$M5.0${\times}10^-3$M이였고 이 범위에서의 상관계수는 -0099107이었다. 바탕용액의 상대표준편차는 3.0%였고 납이온의 검출한계는 5.0${\times}10^-9$M이었다.

UV 임프린트 공정을 이용한 평면 광회로 기반 형광 산소 센서 프로브 모듈 제작 (Fabrication of Fluorescent Oxygen Sensor Probe Module Based on Planner Lightwave Circuits using UV Imprint Lithography)

  • 안기도;오승훈
    • 마이크로전자및패키징학회지
    • /
    • 제25권3호
    • /
    • pp.37-41
    • /
    • 2018
  • 본 논문에서는 UV 임프린트 기반의 평면 광 회로층을 이용한 산소농도 검출용 집적형 형광 프로브 모듈을 제안하였다. 제안된 형광 프로부 모듈은 광원과 형광 신호를 고효율로 전송할 수 있게 동일 광 경로를 가지는 비대칭 $1{\times}2$ 빔 분배기 형태로 설계되었으며, 이를 UV 임프린트 공정을 통해 제작하였다. 제작된 광 회로층의 끝단에 최적의 형광 염료 농도로 센서막을 코팅하여 산소 농도 검출용 광학 프로브 모듈을 구현하였다. 제작된 형광 프로부 모듈을 이용한 산소 농도 측정용 센서 시스템은 0%에서 20%의 가스 농도 범위에서 약 0.3%의 분해능까지 산소 농도를 검출 할 수 있었다. 이러한, 평면 광회로 기반의 형광 프로브 모듈은 저가의 집적형 산소 센서 검출 시스템을 가능하게 하여, 화학분야, 바이오 분야, 그리고 대기 및 수질 환경을 모니터링 하는 분야에 적용될 수 있을 것으로 기대된다.

Calmodulin 단백질의 형태변화를 이용한 광섬유 형광센서에 의한 $Ca^{2+}$의 정량 (Determination of $Ca^{2+}$ by Fiber Optic Fluorosensor Based on the Conformational Change of the Protein Calmodulin)

  • 이창섭;양승태
    • 분석과학
    • /
    • 제8권3호
    • /
    • pp.221-227
    • /
    • 1995
  • $Ca^{2+}$에 대하여 특이한 선택성을 보이는 광섬유형광센서에 대하여 연구하였다. 이 센서는 $Ca^{2+}$과 형광성 킬레이트를 형성하는 단백질 Calmodulin(CaM)을 사용하였으며, 두 갈래로 된 광섬유 다발의 끝면에 플루오르세인 이소티오시아네이트로써 형광 표지된 Calmodulin(FCaM)으로 만든 용액을 투석막 안에 넣어서 제작하였다. 이 센서의 감응 메카니즘은 FCaM이 $Ca^{2+}$과 결합하여 킬레이트를 형성할 때에 나타나는 형광 스펙트럼의 이동 현상을 바탕으로 한다. CaM은 $Ca^{2+}$과 결합할 때에 형태변화를 일으키며, 이로 인해 유발되는 FCaM의 형광세기 변화로써 농도를 결정하였다. 광전자증배관으로 형광의 세기를 측정하여 $Ca^{2+}$에 대한 검정곡선을 작성하였으며, 센서의 $Ca^{2+}$에 대한 검출한계와 $Mg^{2+}$, $Eu^{3+}$, $La^{3+}$들에 의한 방해효과, 감응 시간 및 수명을 조사하였다.

  • PDF

형광검출기반 광학식 용존산소 측정센서 개발 및 특성 분석 (Development and Characterization of Optical Dissolved Oxygen Sensor based on the Fluorescence Detection)

  • 곽현민;권명회;최계운;정윤석;정창환;박규하;손옥재;김준형
    • 한국산학기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.569-574
    • /
    • 2014
  • 오폐수 처리에 있어서 용존산소량을 장기간, 연속측정이 가능한 DO 센서의 개발이 요구되어, 형광검출 특성을 이용한 광학식 DO 센서를 개발하고 특성을 분석하였다 (OS-100, 글로벌광통신주식회사). 형광 센서막은 GA를 이용하여 졸-겔 방법을 이용하여 $Ru(Dpp)_3{^{2+}}$(tris(4,7diphenyl-1, 10-phenanthroline) ruthenium(II)) 형광물질을 제작하였고, 용액과 혼합하여 스프레이 방법으로 석영기판위에 증착하였다. 증착된 형광막은 용존산소 농도 3 mg/L에서 10 mg/L 사이의 넓은 영역에서 ${\pm}1%$ 이하의 오차를 보였다. 제작된 광학식 DO 센서의 성능평가를 위하여 대구염색단지의 오폐수처리장 폐수의 실시간 용존산소를 장기간 측정하였다. 6개월간의 장기간에 걸쳐 실시간 측정된 용존산소의 결과는 염색공단 폐수의 악조건 하에서도 ${\pm}2%$ 이하의 오차를 나타내었다.

색 변화를 활용한 중금속 이온 검출에 특화된 멤브레인 기반 센서의 최근 연구 개발 동향 (Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection)

  • 방세연;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제31권2호
    • /
    • pp.87-100
    • /
    • 2021
  • 최근 오염물질 수위의 급격한 상승세와 더불어 가속화되는 자연환경 파괴로 인해 다양한 환경 속에 쌓이는 오염물질의 검출 및 모니터링은 현대 사회의 중요한 미션 중 하나로 자리 잡았다. 본 논문에는 멤브레인 기반의 광학 센서를 활용한 미량 오염물질 검출에 대한 최근 연구 동향이 요약되어 있다. 본 논문에 포함된 연구들은 섬유소로 이루어진 멤브레인을 검출을 위한 플랫폼으로 사용하였으며, 금속 나노 입자나 형광단을 색 변화 검출을 위해 이용하였다. 제조된 광학 센서들은 모두 적절하거나 특출한 수준의 감도를 보였고, 대부분의 센서에서 타겟 물질이 아닌 이온이나 물질에는 반응하지 않는 정확성 또한 확인되었다. 검출 플랫폼으로 이용된 섬유소 멤브레인의 물리적, 화학적 특성들은 멤브레인 합성 방법이나 색 변화를 위한 광학 물질 등을 바꾸는 방법을 통해 각 연구의 목적에 맞추어 최적화될 수 있었다. 또한, 멤브레인을 기반으로 하여 제조된 센서들은 운반이 편리하고 기계적 성질이 강해 현장에서 바로 오염물질을 검출할 수도 있다는 사실이 제시되었다. 이러한 장점 덕분에 멤브레인 기반 센서들은 식용수에서 검출된 중금속의 정량화와 자연 수질환경에서 발견되는 미량 중금속 및 유독성 항생제의 감지 등 다양한 목적을 위해 활용될 수 있었다. 몇몇의 연구에서 제조된 센서들은 항균성이나 재활용성 또한 나타내었다. 대부분의 센서들이 타겟 물질을 감지한 후 육안으로도 식별 가능한 색 변화를 보였으나, 본 논문에 포함된 많은 연구들은 형광 발산, UV-vis 분광학, RGB 색 강도 차이 등을 비교 분석한 더 상세한 검출 결과를 제시하였다.

광섬유센서를 이용한 Eu(III)의 형광분광법적 정량 (Determination of Eu(III) by Fluorescence Spectrometry using Fiber Optic Sensor)

  • 이상학;이윤희;양승태;최상섭
    • 분석과학
    • /
    • 제11권5호
    • /
    • pp.409-412
    • /
    • 1998
  • 수용액 중의 europium(III) 이온을 europium(III) 이온의 농도에 따른 calmodulin의 형태변화 때문에 나타나는 형광세기를 측정함으로써 정량하는 방법에 대하여 조사하였다. 광섬유센서는 광섬유의 끝 부분에 투석막을 이용하여 지시용액을 담을 공간을 만들고, 여기에 fluorescein으로 표지된 calmodulin, EGTA 및 완충용액을 넣는 방법으로 제작하였다. 지시용액으로 $5.0{\times}10^{-5}M$ calmodulin, 0.5 mM, EGTA, 5.0 mM Tris-HCl 완충용액을 사용하고, 용액의 pH, 들뜸파장 및 형광 측정파장을 각각 7.0, 495 nm와 520 nm로 고정하였을 때의 europium(III) 이온에 대한 검정곡선을 작성하였다. 검출 한계는 $1.0{\times}10^{-11}M$ 이었고, 직선감응범위는 $1.0{\times}10^{-11}M{\sim}1.0{\times}10^{-9}M$ 이었다. 광섬유센서의 감응 시간은 15분 이었다. Europium(III) 이온을 본 방법으로 정량할 때, $Na^+$ 이온과 $K^+$ 이온은 전혀 방해를 하지 않았으나 $Ca^{2+}$ 이온은 심하게 방해하였다.

  • PDF

ITO 기판위에 증착시킨 PLT 박막의 특성 및 그 응용 (Characteristics and Application of PLT Thin-Films Deposited on ITO Substrate)

  • 배승춘;박성근;최병진;김기완
    • 센서학회지
    • /
    • 제6권5호
    • /
    • pp.423-429
    • /
    • 1997
  • PLT 절연막을 평판표시소자의 재료로 사용하고자 ITO 기판위에 제조하여 그 특성을 조사하였으며 이를 전계 발광소자의 절연층으로 사용하여 그 응용가능성을 조사하였다. PLT 절연막은 기판온도 $500^{\circ}C$, 분위기압 30mTorr에서 증착한 경우 비유전율과 전계파괴강도가 각각 120 및 3.2MV/cm였으며, 성능지수인 $E_{BC}{\cdot}{\epsilon}_r$값이 384로 가장 높았다. 전기저항율은 $2.0{\times}10^{12}{\Omega}{\cdot}cm$ 였다. 또한 증착시 기판온도 및 분위기압에 따른 결정성장을 조사한 결과 기판온도가 $400^{\circ}C$로 낯을 경우에는 비정질 상태였으나 $450^{\circ}C$ 이상의 온도에서는 perovskite와 pyrochlore 구조의 다정질상태의 결정이 성장하였고, 분위기압이 높을수록 결정성장이 더 잘 되었다. 이 PLT 절연막과 ZnS:Mn 형광막을 이용하여 ITO/PLT/ZnS:Mn/PLT/Al 구조의 박막 EL소자를 제작한 결과 문턱전압은 $35.2V_{rms}$였으며, $50V_{rms}$ 1kHz의 구동조건에서 EL의 휘도는 $2400cd/m^{2}$이었으며, 본 실험에서 제조된 박막 EL소자의 최대 발광효율은 0.811m/W였다.

  • PDF

다양한 ECM 조건하에서의 세포막 미세영역 부위 국소접착인산화효소 활성의 단일세포 이미징 기반 분석 (Single-Cell-Imaging-Based Analysis of Focal Adhesion Kinase Activity in Plasma Membrane Microdomains Under a Diverse Composition of Extracellular Matrix Proteins)

  • 최규호;장윤관;서정수;김헌수;안상현;한기석;김은혜;김태진
    • 생명과학회지
    • /
    • 제32권2호
    • /
    • pp.148-154
    • /
    • 2022
  • 국소접착인산화효소(FAK)는 국소접착부에서 세포부착, 세포이동, 세포역학적 신호전달 등에 관여한다고 알려져 있다. 그러나 세포 외 기질(ECM)과 상호작용하는 인테그린 막단백질과 함께 위치하는 세포막 미세영역(membrane microdomain)의 종류와 ECM 구성에 따른 FAK 활성은 여전히 불분명하다. 형광 공명 에너지 전달(FRET)을 기반으로 유전적으로 인코딩 된 바이오센서는 세포 내 FAK 신호를 높은 시공간 해상도로 제공할 수 있다. 본 연구에서는 유리, 제1형 콜라겐, 피브로넥틴, 라미닌의 ECM 조건에서 FRET 기반 막 표적 FAK 바이오센서를 사용하여 지질유동섬(Lipid raft) 및 비-지질유동섬(non-Lipid raft)에서 FAK의 활성을 분석하고 시각화 하였다. 흥미롭게도, 지질유동섬에서 라미닌 조건 하의 FAK 활성은 다른 ECM 조건보다 낮았고, 비-지질유동섬에서 FAK 활성은 다른 ECM 조건보다 낮았다. 동일한 ECM 조건 상의 비교에서는 피브로넥틴 조건일 때 지질유동섬에서 비-지질유동섬 보다 높은 FAK 활성이 관측되었다. 따라서 이번 연구는 FAK 활성도가 ECM 유형 및 세포막 미세영역에 따라 특이적으로 조절되는 것을 시각적, 정량적으로 보여준다.

Human Serum Amyloid A-1 단백질 농도 분석을 위한 CdSe/ZnS 양자점 기반의 Lateral Flow Immunoassay 방법 개발 (Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots)

  • 아이딜파지리;고은서;이상혁;이혜진
    • 공업화학
    • /
    • 제30권4호
    • /
    • pp.429-434
    • /
    • 2019
  • 본 논문에서는 수용성의 CdSe/ZnS 양자점을 합성하고 이에 항체기능성을 도입하여 lateral flow immunoassay (LFIA) 플랫폼에 융합하여 폐암 질병진단에 활용 가능한 단백질 바이오마커[예: 인간 혈청 아밀로이드 A-1 (hSAA1)]의 농도 분석에 적용하고자 한다. 면역분석법 센서 스트립은 니트로셀룰로오즈 막에 테스트라인과 대조라인으로 각각 항hSAA1 단일클론항체(10G1)(anti-hSAA1)와 항chicken IgY (anti-chicken IgY)를 스프레이하여 제작하였다. 이와 함께, 유기상에서 합성된 CdSe/ZnS 양자점은 카르복실기로 변형된 알케인티올기를 이용한 리간드 교환방법으로 수용성으로 전환하였으며, 이에 타겟 단백질인 hSAA1에 특이적으로 결합 가능한 항체인 항hSAA1 단일클론항체(14F8)로 컨쥬게이션하여 형광검출용 입자[QDs-anti hSAA1 (14F8)]로 사용하였다. 제작된 LFIA 스트립 위에 순차적으로 다른 농도의 hSAA1과 QDs-anti hSAA1 (14F8)의 복합체를 흘려주면, 테스트라인에 anti hSAA1 (10G1)/hSAA1/QDs-anti hSAA1 (14F8) 샌드위치 복합체가 형성되어 양자점에 의한 발광신호가 검출됨을 측정하였다. 최적화된 측방흐름이 가능한 완충용액 조건에서 100 nM 농도의 hSAA1 단백질의 유무를 5 min 안에 눈으로 확인 가능하였다.