Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.2.148

Single-Cell-Imaging-Based Analysis of Focal Adhesion Kinase Activity in Plasma Membrane Microdomains Under a Diverse Composition of Extracellular Matrix Proteins  

Choi, Gyu-Ho (Department of Integrated Biological Science, Pusan National University)
Jang, Yoon-Kwan (Department of Integrated Biological Science, Pusan National University)
Suh, Jung-Soo (Department of Integrated Biological Science, Pusan National University)
Kim, Heon-Su (Department of Integrated Biological Science, Pusan National University)
Ahn, Sang-Hyun (Department of Integrated Biological Science, Pusan National University)
Han, Ki-Seok (Department of Biological Sciences, Pusan National University)
Kim, Eunhye (Department of Integrated Biological Science, Pusan National University)
Kim, Tae-Jin (Department of Integrated Biological Science, Pusan National University)
Publication Information
Journal of Life Science / v.32, no.2, 2022 , pp. 148-154 More about this Journal
Abstract
Focal adhesion kinase (FAK) is known to regulate cell adhesion, migration, and mechanotransduction in focal adhesions (FAs). However, studies on how FAK activity is regulated in the plasma membrane microdomains according to the composition of extracellular matrix (ECM) proteins are still lacking. A genetically encoded fluorescence resonance energy transfer (FRET)-based biosensor can provide useful information on the activity of intracellular signals with high spatiotemporal resolution. In this study, we analyzed the FAK activities in lipid raft (detergent-resistant membrane) and non-lipid raft (non-detergent-resistant membrane) microdomains using FRET-based membrane targeting FAK biosensors (FAK-Lyn and FAK-KRas biosensors) under four different ECM protein compositions: glass, type 1 collagen, fibronectin, and laminin. Interestingly, FAK activity in response to laminin in a lipid raft microdomain was lower than that in other ECM conditions. Cells subjected to fibronectin showed higher FAK activity in a lipid raft microdomain than that in a non-lipid raft microdomain. Therefore, this study demonstrates that the FAK activity can be distinctively regulated according to the ECM type and the environment of the plasma membrane microdomains.
Keywords
Biosensor; extracellular matrix; focal adhesion kinase; FRET; single cell imaging;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Waksman, G. 1994. Crystal structure of the phosphotyrosine recognition domain SH2 of the Src oncogene product complexed with tyrosine-phosphorylated peptides. Cell. Mol. Biol. 40, 611-618.
2 Bershadsky, A. D., Balaban, N. Q. and Geiger, B. 2003. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677-695.   DOI
3 Ffrench-Constant, C. 2004. Integrins. Myelin Biol. Disord. 1, 609-632.
4 Papusheva, E., de Queiroz, F. M., Dalous, J., Han, Y., Esposito, A., Jares-Erijman, E. A., Jovin, T. M. and Bunt, G. 2009. Dynamic conformational changes in the FERM domain of FAK are involved in focal-adhesion behavior during cell spreading and motility. J. Cell Sci. 122, 656-666.   DOI
5 Guan, J. L. 1997. Focal adhesion kinase in integrin signaling. Matrix Biol. 16, 195-200.   DOI
6 Zhao, X. and Guan, J. L. 2011. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv. Drug Deliv. Rev. 63, 610-615.   DOI
7 Lichtenberg, D., Goni, F. M. and Heerklotz, H. 2005. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430-436.   DOI
8 Barczyk, M., Carracedo, S. and Gullberg, D. 2010. Integrins. Cell Tissue Res. 339, 269-280.   DOI
9 Cai, X., Lietha, D., Ceccarelli, D. F., Karginov, A. V., Rajfur, Z., Jacobson, K., Hahn, K. M., Eck, M. J. and Schaller, M. D. 2008. Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol. Cell. Biol. 28, 201-214.   DOI
10 Dhavalikar, P., Robinson, A., Lan, Z., Jenkins, D., Chwatko, M., Salhadar, K., Jose, A., Kar, R., Shoga, E., Kannapiran, A. and Cosgriff-Hernandez, E. 2020. Review of integrin-targeting biomaterials in tissue engineering. Adv. Healthc. Mater. 9, 1-26.   DOI
11 Janmey, P. A. and McCulloch, C. A. 2007. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9, 1-34.   DOI
12 Kim, T. J., Lei, L., Seong, J., Suh, J. S., Jang, Y. K., Jung, S. H., Sun, J., Kim, D. H. and Wang, Y. 2019. Matrix rigidity-dependent regulation of Ca 2+ at plasma membrane microdomains by FAK visualized by fluorescence resonance energy transfer. Adv. Sci. 6, 4.
13 Seong, J., Ouyang, M., Kim, T., Sun, J., Wen, P. C., Lu, S., Zhuo, Y., Llewellyn, N. M., Schlaepfer, D. D., Guan, J. L., Chien, S. and Wang, Y. 2011. Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer. Nat. Commun. 2, 406.   DOI
14 Kim, T. J., Joo, C., Seong, J., Vafabakhsh, R., Botvinick, E. L., Berns, M. W., Palmer, A. E., Wang, N., Ha, T., Jakobsson, E., Sun, J. and Wang, Y. 2015. Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs. Elife 2015, 1-14.
15 Kshitiz, Hubbi, M. E., Ahn, E. H., Downey, J., Afzal, J., Kim, D., Rey, S., Chang, C., Kundu, A., Semenza, G. L., Abraham, R. M., Levchenko, A., Hubbi, M. E., Ahn, E. H., Downey, J., Afzal, J., Kim, D., Rey, S., Chang, C., Kundu, A., Semenza, G. L., Abraham, R. M. and Levchenko, A. 2012. Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors. Sci. Signal. 5, ra41.   DOI
16 Lietha, D. and Izard, T. 2020. Roles of membrane domains in integrin-mediated cell adhesion. Int. J. Mol. Sci. 21, 1-19.
17 Parsons, J. T., Horwitz, A. R. and Schwartz, M. A. 2010. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633-643.   DOI
18 Malinsky, J., Opekarova, M., Grossmann, G. and Tanner, W. 2013. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annu. Rev. Plant Biol. 64, 501-529.   DOI
19 Mitra, S. K., Hanson, D. A. and Schlaepfer, D. D. 2005. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56-68.   DOI
20 Kiyokawa, E., Hara, S., Nakamura, T. and Matsuda, M. 2006. Fluorescence (Forster) resonance energy transfer imaging of oncogene activity in living cells. Cancer Sci. 97, 8-15.   DOI
21 Roca-Cusachs, P., Iskratsch, T. and Sheetz, M. P. 2012. Finding the weakest link-exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125, 3025-3038.   DOI
22 Shaw, A. S. 2006. Lipid rafts: Now you see them, now you don't. Nat. Immunol. 7, 1139-1142.   DOI
23 Terai, K., Imanishi, A., Li, C. and Matsuda, M. 2019. Two decades of genetically encoded biosensors based on forster resonance energy transfer. Cell Struct. Funct. 44, 153-169.   DOI
24 Zeng, Y., Zhang, X. F., Fu, B. M. and Tarbell, J. M. 2018. The role of endothelial surface glycocalyx in mechanosensing and transduction. Adv. Exp. Med. Biol. 1097, 1-27.   DOI
25 Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y. and Chien, S. 2005. Visualizing the mechanical activation of Src. Nature 434, 1040-1045.   DOI
26 Kshitiz, Park, J., Kim, P., Helen, W., Engler, A. J., Levchenko, A. and Kim, D. H. 2012. Control of stem cell fate and function by engineering physical microenvironments. Integr. Biol. 4, 1008-1018.   DOI
27 Zacharias, D. A., Violin, J. D., Newton, A. C. and Tsien, R. Y. 2002. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913-916.   DOI