• Title/Summary/Keyword: 혈관탄성

Search Result 76, Processing Time 0.02 seconds

Determinants of Successful Percutaneous Transluminal Coronary Angioplasty (경피적 관상동맥 성형술의 성공율에 영향을 미치는 인자에 대한 고찰)

  • Choi, Kyo-Won;Kweon, Jun-Young;Kim, Young-Jin;Lee, Tae-Il;Shin, Dong-Gu;Kim, Young-Jo;Shim, Bong-Seup;Lee, Hyun-Woo;Lee, Sam-Beom
    • Journal of Yeungnam Medical Science
    • /
    • v.11 no.2
    • /
    • pp.230-239
    • /
    • 1994
  • In Order to evaluate determinants of successful percutaneous transluminal coronary angioplasty (PTCA), PTCA was performed for 172 coronary arterial lesions in 120 patients (89 male, 31 female) at Yeungnam university hospital from Sep. 1992 to Aug. 1993. The corinary artery luminal diameter at the site of the original stenosis was eveluated from end-diastolic frames of identical projections of the preangioplasty and immediate post angioplasty. The coronary luminal and balloon diameters were measured with using of computer measuring system. Overall success rate of 172 attempted lesions was 87.2%. Success rate of female patients was 93.5% and higher than those of male patients. According to the clinical diagnosis, success rate in stable angina was 93.7% and higher than those of post myocardial infarction angina, unstable angina and acute myocardial infarcrion. Success rate of American Heart Association type C lesion was 65.5% and lower those of type A (95.7%), type B (89.5%). There was signfifcantly difference in preangioplasty luminal stenosis, elastic recoil and length of lesion between successful PTCA group and failed PTCA group. Success rate of lesion location at a bend > $45^{\circ}$ and presence of intracoronary thrombus were lower than than those of other angiographic findings. In coclusion, primary angioplasty success was affected by specific angiographic factors. Stenosis severity, thrombus, lesion location at a bend > $45^{\circ}$, elastic recoil, and length of lesion were the principle of determinants of coronary angioplasty success rate.

  • PDF

The Effects of Wall Elasticity on Wall Shear Rate of a Divergent Tube (Vascular Graft) (벽 탄성도가 확장관(인조혈관) 벽 전단변형률에 미치는 영향)

  • Rhee, Kye-Han;Lee, Sang-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.912-921
    • /
    • 1999
  • Shear stress acting on the arterial wall by blood flow is an important hemodynamic factor influencing blocking of blood vessel by thickening of an arterial wall. In order to study the effects of wall elasticity on the wall shear rate distribution in an artery-divergent graft anastomosis, a rigid and a elastic model are manufactured. These models are placed in a pulsatile flow loop, which can generate the desired flow waveform. Flow visualization method using a photochromic dye is used to measure the wall shear rate distribution. The accuracy of measuring technique is verified by comparing the measured wall shear rate in the straight portion of a model with the theoretical solution. Measured wall shear rates depend on the wall elasticity and flow waveform. The mean and maximum shear rate in the elastic model are lower than those in rigid model, and the decreases are more significant near the end of a divergent tube. The reduction of mean and maximum of wall shear rate in an elastic model are up to 17 percent.

Elastic Motion of the Blood Vessel and Wall Shear Stress in Carotid Artery with Stenosis (협착된 경동맥 내의 벽전단응력 및 혈관의 탄성적 거동)

  • Kim Chang Nyung;Oh Taek Yeol;Choi Myung Jin;Jung Sam Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.179-187
    • /
    • 2005
  • The characteristics of blood flow and the interaction between the blood vessel and blood flow play important roles in plaque cap rupture and the growth of atherosclerosis which may lead directly to a heart attack or a stroke. In this study, carotid arteries with different stenoses have been numerically simulated to investigate the wall shear stress(WSS) and the elastic motion of the vessel. Blood flow has been treated as physiological, laminar and incompressible flow. To model the shear thining behavior of the blood, the Carreau-Yasuda model has been employed but the viscoelasticity of blood has not been considered. The results show that the WSS of $severe(75\%)$ stenosis is much higher than those of $25\%\;and\;50\%$ stenosis in the region of stenosis. With the increase in the stenosis thickness, the expansion ratio of the center of the stenosis decreases while the expansion ratio of the upstream region of the stenosis increases.

A Numerical Analysis on the Hemodynamic Characteristics in Elastic Blood Vessel with Stenosis (협착이 있는 탄성혈관을 흐르는 혈액의 유동특성에 관한 수치해석적 연구)

  • 정삼두;김창녕
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, blood flow in a carotid artery supplying blood to the human's brain has been numerically simulated to find out how the blood flow affects the genesis and the growth of atherosclerosis and arterial thrombosis. Velocity Profiles and hemodynamic parameters have been investigated for the carotid arteries with three different stenoses under physiological flow condition. Blood has been treated as Newtonian and non-Newtonian fluid. To model the shear thinning properties of blood for non-Newtonian fluid, the Carreau-Yasuda model has been employed. The result shows that the wall shear stress(WSS) increases with the development of stenosis and that the wall shear stress in Newtonian fluid is highly evaluated compared with that in non-Newtonian Fluid. Oscillatory shear index has been employed to identify the time-averaged reattachment point and this point is located farther from the stenosis for Newtonian fluid than for non-Newtonian fluid The wall shear stress gradient(WSSG) along the wall has been estimated to be very high around the stenosis region when stenosis is developed much and the WSSG peak value of Newtonian fluid is higher than that of non-Newtonian fluid.

Estimating Material Parameters of Rubber-liked Material Similar to Biomaterial (생체 유사재료를 설명하는 물질 상수 추정)

  • Kang, Taewon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • It is important to have a well developed strain energy function in order to understand the mechanical behavior of biomaterial like the blood vessel of artery. However, since it is not possible to have a complete form of strain energy function of artery, theoretical framework describing the behaviour of Rubber-like material which is similar to blood vessel is applied to infer useful forms of strain energy function of biomaterial. Based on Chuong-Fung model and Mooney-Rivlin model, material parameters are estimated based on experimental data. From the results, it can be inferred that the estimated parameters can be used to explain the difference of mechanical characteristics between normal vessel and vessel with stent.

Theoretical Framework For Describing Strain Energy Function on Biomaterial (생체재료를 설명하는 스트레인 에너지 함수에 대한 이론적 고찰)

  • Kang, Taewon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. However, theoretical framework to describe and quantify the behaviour of blood vessel was not well established so far. For studying the biomechanical behavior of artery, Rubber-liked material which is similar to passive artery is selected since conventional theoretical interpretation is very limited to understand and predict the behavior of biomaterial. Rubber-like material is assumed to be very similar to artery and has properties of isotropy, homogeneity and is undergoing large deformation. Based on this assumption, stress developed on Rubber-like material is described by strain energy function and strain invariants which are required to understand the nonlinear elastic behavior of biomaterial. The descriptor which would be used for understanding the biomechanical behavior of artery is studied in this work.

A Numerical Analysis on the Motion of Mechanical Heart Valve(MHV) and Characteristics of Blood Flow in an Elastic Blood Vessel (탄성혈관 내 기계식 인공심장판막(MHV)의 거동 및 혈액 유동 특성에 관한 수치해석적 연구)

  • Bang Jin-Seok;Choi Choeng-Ryul;Kim Chang-Nyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.154-161
    • /
    • 2005
  • In this study, the leaflet motion of a mechanical heart valve and the characteristics of two-dimensional transient blood flow in an elastic blood vessel have been numerically investigated by using fluid-structure interaction method. Here, blood has been assumed as a Newtonian, incompressible fluid. Pressure profiles have been used as boundary conditions at the ventricle and the aorta. As a result, closing motion of the leaflet is faster than opening one. While opening angles of leaflet grow up, vortex is detected at the sinus and backward of the leaflets. When the leaflet is fully closed, vortex is detected at the ventricle and at that moment maximum displacement of the elastic blood vessel is observed in the vicinity of the sinus region. Maximum displacement is caused in association with the blood flow that is oriented toward the elastic blood vessel.

A Numerical Analysis on the Motion of a Curved Bileaflet in Mechanical Heart Valve(MHV) and the Characteristics of Blood Flow in an Elastic Blood Vessel (탄성혈관 내 곡면형 이엽 기계식 인공심장판막의 거동 및 혈액 유동 특성에 관한 수치해석적 연구)

  • Bang J. S.;Choi C. R.;Kim C. N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • In this study, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in terms of fluid-structure interaction. Here, blood has been assumed as a Newtonian, incompressible fluid. Pressure profiles have been used as boundary conditions at the ventricle and the aorta. From this analysis, the motion of the leaflet has been observed with fluttering phenomenon and rebound, and the flow fields of blood have been obtained with recirculation and regurgitation. The results can contribute to the development of design methodology for the curved bileaflet mechanical heart valve.

  • PDF

A Study of Fiber-Reinforced Material Models for the Mechanical Characteristics of Human Annulus Fibrosus (인체의 윤상인대의 역학적 특성 모사를 위한 섬유 강화 모델에 관한 연구)

  • Lim, Jun-Taek;Choi, Deok-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.619-628
    • /
    • 2011
  • Human soft tissues, including muscles, ligaments, skin, and blood vessels, are an interesting subject because damage to them can be observed in everyday life. Besides the lack of available experimental data and the large deformation upon loading, the anisotropic and compressible nature of annulus fibrosus makes it more difficult to find a simple material model. A fiber-reinforced hyperelastic material model is used to determine the stress-strain curves upon uniaxial loading. The energy potential function for annulus fibrosus is composed of three different parts: matrix, fibers, and matrix-fiber interaction, which accounts for the angles between two families of fibers. In this paper, two different types of energy potential function for the matrix are considered, and are inserted into the fiber-reinforced model. The calculated results are compared with the Neo-Hookean model and experimental data, and reasonable agreement is observed overall.

Thromboelastographic Analysis of the Coagulation System During Cardiopulmonary Bypass -Analysis of the Effect of Low-Dose Aprotinin (심폐바이패스시 혈액응고체계 변화의 혈전탄성검사 분석 - 단일 저용량 아프로티닌 투여 효과 분석 -)

  • 김관민;박계현
    • Journal of Chest Surgery
    • /
    • v.30 no.7
    • /
    • pp.677-685
    • /
    • 1997
  • Thromboelastography(TEG) is the unique measure that gives rapid information about the whole clotting process. Simplifying the diagnosis of coagulopathy during operations, TEG can provide an adequate therapy for postoperative bleeding. Remarkable improvement in hemostasis after cardiopulmonary bypass(CPB) has been achieved by the treatment with proteinase inhibitor aprotinin, but the hemostatic mechanism of aprotinin during CPB is still unclear. This study was designed to evaluate the effects of aprotinin on coagulation system during CPB by using TEG. Forty patients who underwent CPB were divided into two groups: aprotinin(2u 106 kallikrein inhibition units, as a single dose into the cardiopulmonary bypass priming solution) treatment group(male 14, female 8, mean age=50.Byears) and no aprotinin treatment(control) group(male 10, female 8, mean age=53.4 years). TEG, activated clotting time, prothrombin time, activated partial thromboplastin time, platelet counts, fibrinogen an (ibrinogen degradation product(FDP) concentrations were checked before and after CPB(30 minutes after neutralization of heparin effect by protamine sulfate). There was no significant difference in other conventional coagulation tests of two groups except postcardiopulmonary bypass FDP concentration in control group, which was significantly increased compared to that in aprotinin group(p<0.05). In TEG variables of both groups, clot formation time(K) and alpha $angle(\alpha^{\circ})$ were significantly increased and decreased, respectively, after CPB(p<0.05), but fibrinolytic index(LYS60) was not changed during CPB. In aprotinin group, reaction time(R) was decreased significantly after CPB(p<0.05) but maximum amplitude(MA) was not changed(p>0.05). On the contrary, R was not changed markedly but MA was decreased significantly in control group after CPB(p<0.05). This result shows that main change in coagulation system during CPB is not hyperfibrinolysis but cecrease in clot strength by platelet dys unction, and the main effect of aprotinin during cardiopulmonary bypass is the maintenance of clot strength to the pre-CPB level by the preservation of platelet function.

  • PDF