• Title/Summary/Keyword: 현장 재료 강도

Search Result 419, Processing Time 0.026 seconds

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

A Study on the Engineering Characteristics of Power Plant Coal Ash (화력발전소 부산물인 석탄회의 공학적 특성에 관한 연구)

  • Kuk, Kilkeun;Kim, Hyeyang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.25-34
    • /
    • 2010
  • In this study characteristics for reclaimed ash was studied to enlarge the usage of reclaimed ash which is reaching to 72 million ton producted from whole thermal power plants in South Korea. Fly ash and bottom ash are reclaimed separately at some of thermal power plants. However, typically bottom ash and fly ash are mixed when they are buried at most of the thermal power plant, as a result the engineering characteristics of ponded ash are not investigated properly. In order to investigate the engineering characteristics of the ponded ash, laboratory tests were performed with ponded ash and fly ash from youngheung and samcheonpo thermal power plants. Specific gravity, unit weight, and grain size analysis test were fulfilled to evaluate the physical characteristics and triaxial permeability test, direct shear test, unconfined compressive strength test, compaction test were performed to evaluate the mechanical characteristics. And also engineering characteristics of coal ash from anthracite and Bituminous thermal power plants were compared and studied respectively. As a result of the study, it was confirmed that using coal ash from Bituminous thermal power plants can be effective in the place where lightweight materials are required and using coal ash from anthracite thermal power plants can be effective as backfill material which require higher permeability. Finally, it was confirmed that fly ash from youngheung thermal power plants which has the lowest permeability among the tested material is suitable for a field requiring impermeable material.

Practical Guide to the Characterization of Piezoelectric Properties (압전재료의 기초 물성 측정)

  • Kang, Woo-Seok;Lee, Geon-Ju;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.301-313
    • /
    • 2021
  • Theoretical background for the meaning of various piezoelectric properties can be easily found in a number of textbooks and academic papers. In contrast, how they are actually measured and characterized are rarely described, though this information would be the most important especially to the researchers who just started working on the field. It follows that this report was intended to provide a practical guidance for measuring basic but essential properties of ferroelectric-based piezoelectric materials. The discussion begins with how to measurement dielectric properties such as dielectric permittivity and loss (dissipation factor), followed by piezoelectric properties such as piezoelectric constants, electromechanical coupling factor, and quality factor as well as ferroelectric features, i.e., electric field dependent polarization hysteresis. Though our discussion here is limited to the techniques that are already well-standardized, it is expected to make a seed to be developed into more challenging and creative ones.

Bio-Degradable Plastic Mulching in Sweetpotato Cultivation (생분해성 멀칭필름을 이용한 고구마 재배)

  • Lee, Joon-Seol;Jeong, Kwang-Ho;Kim, Hag-Sin;Kim, Jeong-Ju;Song, Yeon-Sang;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • This experiment was conducted to determine the usability of biodegradable plastic in the mulching cultivation of sweetpotato. For this, we investigated the physical characteristics, biodegradability, leaching, yield, workability, etc. of biodegradable films. Compared with general mulching materials, biodegradable Poly butyleneadipate-co-butylene succinate (PBSA) and PLC+starch showed $2{\sim}27$% higher tensile strength, but $2{\sim}22$% lower elongation and $2{\sim}6$% lower tear strength. In the leaching test on the biodegradable films, heavy metals were detected very little or not at all. As to difference in ground temperature according to mulching material, the temperature was high in order of PLC+starch > PBSA > Low Density Polyethylene (LDPE) > Control during the period from late June to mid July, but in order of LDPE > PLC+starch > PBSA > None during the period from late July to late September. In the mulching cultivation of sweet potato, biodegradable films PBSA (EA, EB, EC) and PLC+starch (DD, DE, DF) began to degrade after 60 days from the cut planting of sweet potato, and over 95% degraded after 120 days. The quantity of roots was 3,070 kg/10a for PBSA, 3,093 kg/10a for PLC-starch, and 2,946 kg/l10a for LDPE, showing no significant difference according to mulching material. Considering the physical characteristics, biodegradability, environment, convenience in harvesting work, yield, etc. of the films in the mulching cultivation of sweet potato, biodegradable films are expected to be very useful.

Setting Time Evaluation of Concrete Using Electrical Resistivity Measurement (전기비저항 측정을 이용한 콘크리트 응결시점 평가)

  • Lee, Han Ju;Yim, Hong Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.361-369
    • /
    • 2017
  • Setting time of cement-based materials can represent a developing strength in early-age mixture, and it can be used a significant parameter of high-performance concrete having various mix-proportions. Generally, initial and final setting time of concrete is measured by penetration resistance method that used a wet-sieving mortar mixture, therefore, it hardly represents the setting time of sound concrete including coarse aggregate. Recently, several nondestructive methods, such as ultrasonic velocity and impendence measurement, are proposed to evaluate the setting time of fresh concrete. This study attempts to measure an electrical resistivity using four-electrode method for evaluation of setting time in early-age cement-based materials. For this purpose, total 10 mixtures are prepared as different mix-proportions including chemical admixture. Based on the experimental results, two electrical parameters, such as initial electrical resistivity and rising time, are proposed to reflect a microstructure development by hydration of cement-based materials. As a result, proposed parameter is also discussed with the measured setting time by penetration resistance method.

Crashworthiness Evaluation of Bridge Barriers Built with Hot-dip Zinc-aluminium-magnesium Alloy-coated Steel (고내식성 용융합금도금강판 적용 교량난간의 충돌성능 평가)

  • Noh, Myung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • This paper proposes road safety facilities applying Hot-dip zinc-aluminum-magnesium alloy-coated steel sheets and coils to reduce the loss of function caused by the corrosion of steel in the service state. Vehicle crash simulations and full-scale crash tests were carried out to provide reliable information on evaluating the crash performance with the products of road safety facilities built with hot-dip zinc-aluminum-magnesium alloy-coated steel. From the results of the simulations and full-scale crash tests, the impact behaviors evaluated by the three-dimensional crash simulations considering the strain-rate dependency in a constitutive model were similar to those obtained from the full-scale crash test results. The full-scale crash test results met the crashworthiness evaluation criteria; hence, the proposed bridge barrier in this paper is ready for field applications.

Simulation of plate deformation due to line heating considering water cooling effects (수냉 효과를 고려한 선상가열에 의한 판 변형의 시뮬레이션)

  • Ko, Dae-Eun;Ha, Yun-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2470-2476
    • /
    • 2011
  • Inherent strain method, a hybrid method of experimental and numerical, is known to be very efficient in predicting the plate deformation due to line heating. For the simulation of deformation using inherent strain method, it is important to determine the magnitude and the region of inherent strain properly. Because the phase of steel transforms differently depending on the actual speed of cooling following line heating, it should be also considered in determining the inherent strain. A heat transfer analysis method including the effects of impinging water jet, film boiling, and radiation is proposed to simulate the water cooling process widely used in shipyards. From the above simulation it is possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision.

An experimental study on the viscosity features of sealant (bentonite-cement slurry) in umbrella arch method (강관다단공법에 적용되는 씰링재 (벤토나이트-시멘트 슬러리)의 점성 특성에 대한 실험)

  • Sagong, Myung;Lee, Jun S.;Park, Jeongjun;Cho, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.773-786
    • /
    • 2018
  • In this paper, viscosity features of sealant (bentonite-cement slurry), which is used for umbrella arch method in tunnel, were studied. The sealant must secure optimal strength and capacity for the waterproof and stabilization of borehole as well as to satisfy groutability. In this study, the variation of viscosity was measured with different mixing processes. With an increase of initial mixing period with water and bentonite mixture, the required time for the rapid increase of viscosity of the sealant is shorten. With increase of mixing period, the possibility of swelling of bentonite will increases and this can lead increase of the viscosity of the mixture. In addition, the behaviors of sealant vary with a drastic increase of the viscosity: thixotropy and rheopexy. Furthermore, the bentonite/water mixing period influences on the bleeding features of the sealant. Further study is required to introduce the guideline, which can be applicable in the field in the aspect of required capacity of the sealants and mixing processes of the ingredients.

Study on for Estimation of Ecological Instream Requirement in Nakdong River (낙동강권역 생태계 필요유량 산정방법 비교 연구)

  • Park, Jung-Eun;Kim, Jeong-Kon;Jeong, Young-Won;Lee, Sang-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.180-180
    • /
    • 2011
  • 하천의 정상적인 기능 및 상태를 유지하기 위하여 필요한 최소유량을 의미하는 하천유지유량은 하천수질보전, 하천생태계보호, 하천경관보전, 염수침입 방지, 하구막힘 방지, 하천시설물 및 취수원보호, 지하수위 유지 등을 감안하여 산정하게 된다. 하천유량 변화는 하천내 동 식물에 영향을 미치며, 특히 고등 생물인 어류의 서식처, 산란장소 및 산란조건 등은 유량 및 수위변화에 민감하게 반응하므로 하천구간별 어류의 서식처 유지에 적절한 수심, 유속 등 수리 조건을 제공할 수 있는 유량을 산정하게 된다. 국내에서는 90년대 후반부터 생태계를 고려한 하천유지유량 개념이 도입되었으며, 어류의 적절한 수생 서식환경 평가를 위해 주로 유량 점증 방법론(IFIM, Instream Flow Incremental Methodology) 개념에 입각한 물리서식처 모형을 이용한 연구가 진행되어 왔다. 본 연구에서는 낙동강수계 13개 지점을 선정하여 어류상 조사를 실시하여 어류의 물리서식처 모형과 수심-유속-유량 관계곡선을 이용한 간단법을 이용하여 생태계 보전을 위한 필요유량을 산정하였다. 어류 물리서식처 모형으로는 어류서식환경 평가에 가장 광범위하게 이용되고, 생태적 특성을 반영할 수 있는 유량점증방법론의 PHABSIM(Physical HABitat SIMulation) 모형을 선택하였다. 현장 모니터링 및 문헌조사를 통해 각 지점별 대표어종을 선정하고, 유량, 수심, 저수로 하천단면, 하상재료와 같은 수리특성을 조사하고, 선정된 한계단면에 대한 유량측정을 실시하였으며, 수심-유속-유량 관계곡선을 통하여 각 지점의 대표어종이 서식할 수 있는 최소유량을 산정하였다. 또한 지점별로 서식처 적합도 지수(HSI, Habitat Suitability Index)와 가중가용면적(WUA, Weighted Usable Area)를 산정하였으며, 이는 PHABSIM 모형의 적용에 이용되었다. 물리서식처 모형과 간단법 적용결과를 비교해본 결과, 모든 지점에서 물리서식처 모형 적용결과가 간단법에 비해 크게 산정되었는데, 이는 간단법이 성어기 서식에 필요한 최소 수리조건을 선택하였지만, PHABSIM의 경우 성어기 어류서식의 최적 수심 및 유속을 이용하여 가중가용면적을 산정하기 때문인 것으로 판단된다. 어류서식과 관련된 많은 관련 데이터가 축적된다면 어류서식처에 맞는 최적의 생태유량을 보다 정확하게 산정할 수 있을 것으로 판단된다.

  • PDF

Proposals for Revision of Lightweight Aggregate Concrete Specifications Based on In-situ Quality Control on Concrete (현장 품질관리를 고려한 경량골재 콘크리트의 시방서 개정안에 대한 고찰)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • This study examined the reliability and revision necessity of concrete standard specifications based on the comparisons with test data obtained by using domestic artificial lightweight aggregates and the contents specified in different foreign specifications including ACI 211.2, ACI 213, ACI 301, JASS 5 and CEB-FIP. To achieve the continuous particle distribution of domestic fine lightweight aggregates, the partial addition of natural sand with the maximum size of 2.5mm was required. To control the segregation and excessive bleeding in the fresh lightweight concrete, the current limitations on the water-to-binder ratio and unit water content need to be modified using lower values. In particular, a rational mixture proportion approach of lightweight concrete needs to be established for the targeted requirements of initial slump, 28-day compressive strength, air content and dry unit weight. Ultimately, significant revision of the concrete standard specifications is required considering the characteristics of domestic artificial lightweight aggregates.