DOI QR코드

DOI QR Code

Practical Guide to the Characterization of Piezoelectric Properties

압전재료의 기초 물성 측정

  • Kang, Woo-Seok (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Geon-Ju (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jo, Wook (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST))
  • 강우석 (울산과학기술원 신소재공학과 및 JULIA 연구센터) ;
  • 이건주 (울산과학기술원 신소재공학과 및 JULIA 연구센터) ;
  • 조욱 (울산과학기술원 신소재공학과 및 JULIA 연구센터)
  • Received : 2021.08.09
  • Accepted : 2021.08.16
  • Published : 2021.09.01

Abstract

Theoretical background for the meaning of various piezoelectric properties can be easily found in a number of textbooks and academic papers. In contrast, how they are actually measured and characterized are rarely described, though this information would be the most important especially to the researchers who just started working on the field. It follows that this report was intended to provide a practical guidance for measuring basic but essential properties of ferroelectric-based piezoelectric materials. The discussion begins with how to measurement dielectric properties such as dielectric permittivity and loss (dissipation factor), followed by piezoelectric properties such as piezoelectric constants, electromechanical coupling factor, and quality factor as well as ferroelectric features, i.e., electric field dependent polarization hysteresis. Though our discussion here is limited to the techniques that are already well-standardized, it is expected to make a seed to be developed into more challenging and creative ones.

본 논문은 대학 연구실과 산업현장에서 강유전 압전 분야 연구를 갓 시작한 이들이 압전 소재의 특성에 대한 기초적, 이론적 개념에 대해서는 각종 교과서와 논문을 통해 쉽게 접할 수 있는 반면, 그 특성들이 실제로 어떻게 측정되고 평가되는 지에 대한 정보를 얻기가 힘들다는 점에 착안하여 압전 분야 입문자가 관련 측정 기술을 보다 쉽게 이해하고 접근할 수 있도록 돕는 것을 목적으로 한다. 기초 유전 물성인 임피던스에 기반한 유전상수와 유전손실 측정법을 시작으로 압전상수, 전기기계결합계수, 품질계수 및 측정 방법에 대해 논의하고, 강유전성을 대표하는 전계에 따른 분극 변화 측정법에 대해 기술하였다. 본 논문에서는 이미 표준화되어 있는 측정법들을 소개하고 있지만, 이를 숙지하고 응용한다면 보다 도전적이고 창의적인 측정법을 도출할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

This research was supported by the Leading Foreign Research Institute Recruitment Program (No.2017K1A4A3015437) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT.

References

  1. W. S. Kang, T. G. Lee, J. H. Kang, J. H. Lee, G. Choi, S. W. Kim, S. Nahm, and W. Jo, J. Eur. Ceram. Soc., 41, 2482 (2021). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.12.028]
  2. A. Kumar, J. Y. Yoon, A. Thakre, M. Peddigari, D. Y. Jeong, Y. M. Kong, and J. Ryu, J. Korean Ceram. Soc., 56, 412 (2019). [DOI: https://doi.org/10.4191/kcers.2019.56.4.10]
  3. C. H. Hong and W. Jo, J. Am. Ceram. Soc., 101, 1949 (2018). [DOI: https://doi.org/10.1111/jace.15344]
  4. C. H. Hong, Z. Fan, X. Tan, W. S. Kang, C. W. Ahn, Y. Shin, and W. Jo, J. Eur. Ceram. Soc., 38, 5375 (2018). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.08.006]
  5. S. S. Lee, C. H. Lee, T. A. Duong, H.T.K. Nguyen, H. S. Han, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 1 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.1.1]
  6. T. M. Noh, J. S. Kim, J. S. Ryu, and H. S. Lee, J. Korean Ceram. Soc., 48, 323 (2011). [DOI: https://doi.org/10.4191/kcers.2011.48.4.323]
  7. J. S. Lee, E. C. Shin, D. K. Shin, Y. Kim, P. A. Ahn, H. H. Seo, J. M. Jo, J. H. Kim, G. R. Kim, Y. H. Kim, J. Y. Park, C. H. Kim, J. O. Hong, and K. H. Hur, J. Korean Ceram. Soc., 49, 475 (2012). [DOI: https://doi.org/10.4191/kcers.2012.49.5.475]
  8. J. R. Yoon, H. Moon, and H. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 23, 216 (2010). [DOI: https://doi.org/10.4313/JKEM.2010.23.3.216]
  9. C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W. Ahn, and W. Jo, J. Materiomics, 2, 1 (2016). [DOI: https://doi.org/10.1016/j.jmat.2015.12.002]
  10. J. Fialka and P. Benes, Proc. 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings (IEEE, Graz, Austria, 2012). [DOI: https://doi.org/10.1109/i2mtc.2012.6229293]
  11. S. Zhang, F. Li, F. Yu, X. Jiang, H. Y. Lee, J. Luo, and T. R. Shrout, J. Korean Ceram. Soc., 55, 419 (2018). [DOI: https://doi.org/10.4191/kcers.2018.55.5.12]
  12. H. Y. Lee, Proc. ISAF-ICE-EMF-IWPM-PFM Meeting 2019EPFL (Lausanne, Switzerland, 2019).
  13. H. P. Kim, G. J. Lee, H. Y. Jeong, J. H. Jang, G. Y. Kim, S. Y. Choi, H. Y. Lee, S. G. Lee, and W. Jo, J. Eur. Ceram. Soc., 39, 3327 (2019). [DOI: https://doi.org/10.1016/j.jeurceramsoc. 2019.04.022]
  14. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, J. Appl. Phys., 108, 034106 (2010). [DOI: https://doi.org/10.1063/1.3466978]
  15. B. Jaffe, W. R. Cook, JR, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), p. 290.
  16. H. J. Lee, S. Zhang, and T. R. Shrout, J. Appl. Phys., 107, 124107 (2010). [DOI: https://doi.org/10.1063/1.3437068]
  17. H. J. Lee, S. Zhang, J. Luo, F. Li, and T. R. Shrout, Adv. Funct. Mater., 20, 3154 (2010). [DOI: https://doi.org/10.1002/adfm.201000390]
  18. C. B. Sawyer and C. H. Tower, Phys. Rev., 35, 269 (1930). [DOI: https://doi.org/10.1103/PhysRev.35.269]