• Title/Summary/Keyword: 허벅다리걸기

Search Result 9, Processing Time 0.026 seconds

A Kinematics Analysis of Uchi-mata(inner thigh reaping throw) by Kumi-kata types and Two different Opponent's Height in Judo[II] (유도 맞잡기 타입과 받기의 신장에 따른 허벅다리걸기의 Kinematic 분석[2])

  • Kwon, Moon-Seok;Kim, Eui-Hwan;Cho, Dong-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.143-157
    • /
    • 2002
  • This study was to analyze the kinematic variables when the subjects performing Uchi-mata(inner thigh reaping throw) by Kumi-kata types((How to grasp A or B?) and two different opponent's height in Judo. Kinematic variables were temporal, posture. Data analysis was collective comparison of two-way ANOVA, t-test by type A&B and two different opponent's height. There were significant difference of Kumi-kata types(p<.05) in the time elapsed on Kake phase(KP : throwing phase) and hip, knee, ankle-angle of the attacking foot in the 1st stage of KP and knee, ankle-angle of the attacking foot and hip, knee ankle-angle of the supporting foot in the 2nd stage of KP. There were significant difference of two opponent's(p<.05) in the time elapsed on KP and hip-angle of the supporting foot in 1st stage of KP. Therefore, the interaction effect(p<.05) were in the time elapsed on KP and hip-angle of the supporting foot in the 2nd stage of KP. So, It could be suggested that Judoka hold on the part-behind neck lapel(type A) at the sleeve with the other of Judogi jacked when opponent's height was short. Because the time elapsed on KP of type B was not so fast as type A(p<.05) during performed Uchi-mata, and also the bigger hip-angle of the supporting foot in the 2nd stage of KP grew, the faster the time elapsed on KP became.

Effect of ankle joint taping treatment on lower extremity joint and center of pressure factors during the Uchi-mata (허벅다리걸기 동작 시 발목 관절의 테이핑 처치가 하지 관절과 압력 중심 요인들에 미치는 영향)

  • Yun, Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.224-231
    • /
    • 2020
  • The purpose of this study was to analyze the effect of ankle joint taping treatment on lower extremity joint and center of pressure(COP) factors during the Uchi-mata. Twenty college judo athletes (age, 20.9 ± 0.8 years; height, 168.6 ± 7.4cm; weight, 73.5 ± 11.6kg; body mass index, 25.7 ± 2.6kg/㎡) participated, and two types before and after ankle joint taping treatment when the during the Uchi-mata was exhibited under conditions, the angle and COP factors of the support leg joints were analyzed to show the following results. At the time of E2 (t = 2.411, p = .027) E4 (t = 2.388, p = .029), the ankle joint angle was statistically less after the treatment than before the taping treatment, and E2 (t = -2.343, p = .032) At E3 (t = -4.531, p = .000), the angle of the hip joint was statistically large. And after the ankle joint taping treatment, the medial/lateral COP movement after the ankle joint taping treatment was statistically large in the P3 phase of throwing the opponent (t = 2.670, p = .016), and the anterior/posterior COP movement showed a statistically small number in the P1 phase where the opponent was tilted (t = 2.846, p = .011). Therefore, it was suggested that judo athletes who use thighs as a special technique should be used considering the movement function of the support joint and the range of movement of the COP caused by tapping of the ankle joint.

Effect of Knee Joint Injury on Biomechanical Factors during the Uchi-mata (허벅다리걸기 시 무릎 관절 부상이 운동역학적 요인들에 미치는 영향)

  • Hyun Yoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.642-649
    • /
    • 2023
  • The purpose of this study was to analyze the effects of knee joint injury experiences of judo players on kinematic factors and center of pressure factors during uchimata. Among right-handed male college judo players specializing in uchimata, 13 people who had a knee joint injury experience(age, 20.69.1±0.75 years; height, 172.85±4.81 cm; body mass, 74.92±5.51 kg; and career, 8.92±0.95 years) and 13 people who did not have a knee joint injury experience(age, 21.08.1±0.76 years; height, 172.54±6.32 cm; body mass, 76.62±9.09 kg; and career, 9.46±0.94 years) within the last 2 years were divided into two groups and participated as subjects. The two groups were evaluated for differences in ankle, knee, and hip joint angle variables, COP range, and velocity components during uchimata. As a result of the study, the EIG group showed smaller values in the knee joint flexion angle at E3 and the hip joint extension angle at E4 during uchimata than the NIG group. In addition, the EIG group showed lower values in the range of motion of the COP and forward movement velocity of the COP in the one-leg support phase than the NIG group.

The Kinetic and EMG Analysis about Supporting Leg of Uke in Judo (유도 허벅다리걸기 기술 발휘 시 지지발에 대한 근전도 및 운동역학적 분석)

  • Park, Jong-Yul;Kim, Tae-Wan;Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.197-205
    • /
    • 2007
  • The purpose of this study is to analyze the muscle activations and Ground Reaction Force(GRF) in university judo players, and provide the guide of training in Judo. Using surface electrode electromyography(EMG), we evaluated muscle activity in 5 university judo players during the Judo Uke Movements. Surface electrodes were used to record the level of muscle activity in the Tibialis Anterior, Rectus Femoris, Elector Spinae, Gluteus Maximus, Gastrocnemius muscles during the Uke. These signals were compared with %RVC(Reference voluntary contraction) which was normalized by IEMG(Integrated EMG). The Uke was divided into four phases : Kuzushi-1, Kuzushi-2, Tsukuri, Kake. The results can be summarized as follows: 1. The effective Uke Movements needs to short time in the Kake Phase 2. The Analysis of Electromyography of Uke Movements in Supporting Leg; TA(Tibialis anterior) had Higher %RVC in the Kuzushi Phase, RF(Rectus Femoris) had Higher %RVC in the Tsukuri Phase, GM(Gluteus Maximus) had Higher %RVC in the Kake Phase 3. The ground reaction force for Z(vertical) direction was showed increase tendency in Kuzushi phase, Tsukuri phase and decrease tendency in Kake phase.

The Kinetic Analysis of the Lower Extremity Joints when Performing Uchi-mata by Uke's Posture in Judo (유도 허벅다리걸기 기술 발휘 시 받기 자세에 따른 하지관절의 kinetic 분석)

  • Yoon, Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.167-183
    • /
    • 2005
  • The purpose of this study was to analyze the kinetical variables of the lower extremity joints when performing uchimata(inner thigh reaping throw) by uke(receiver)'s two posture(shizenhon tai), jigohon tai), by voluntary resistance level(VRL) in judo. The subjects, who were for 3 male Korean national representative judokas(elite group : EG) and 3 male representative judokas of Korean University(non-elite group: NEG), and were filmed 4 DV video cameras(60fields/sec.), that posture of uke were shizenhon-tai (straight natural posture), jigohon-tai(straight defensive posture), VRL of uke was 0%. The selected trials were subject to 3-dimensional film motion analysis and ground reaction force(MRF) analysis. The kinetical variable of this study were temporal, postures( ankle and knee angle of attacking leg), that were computed through video film analysis, MRF at events were obtained from the ground-reaction force analysis by AMTI force plate system. When performing uchi-mata according to each posture and by VRL, from the data analysis and discussion, the conclusions were as follows : 1) Temporal variables : total time-required(TR) when performing uchi-mata was shown EG 0.13sec the shorter than NEG(o.77sec.) in shizenhon-tai. and EG 0.17sec the shorter than NEG(o.76sec.) in jigonhon-tai. Also, all of two groups' jigohon-tai(0.68sec.) were faster than shizenhon-tai(0.71 sec.). 2) The posture variables : The angle of ankle in attacking when performing were plantar flexion in EG, and dorsi flexion in NEG by shizenhon-tai and jigohon-tai posture. The angle of knee in attacking when performing were extension in EG and NEG, but range of extension in EG were larger than in NEG. 3) MRF : Vertical MRF when performing uchi-mata was shown the strongest in the 2nd stage of kake phase(2.23BW) by EG in both posture, and it was same value by NEG(2.23BW), but shizenhon-tai (2.28BW), jigohon-tai(1.64BW), respectively.

A Case Study on Kinematical Traits Analysis when Performing of Uchimatia(inner thigh reaping throw) by Posture and Voluntary Resistance Levels(VRL) of Uke in Judo[ I ] (유도 허벅다리걸기 기술발휘 시 받기의 자세와 저항수준에 따른 운동학적 특성 분석 사례연구[ I ])

  • Kim, Eui-Hwan;Yoon, Hyun;Kim, Sung-Sup
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.235-257
    • /
    • 2004
  • The purpose of this study was to analyze the kinematical traits variables when performing Uchimata(inner thigh reaping throw) by Voluntary Resistance Levels(VRL) and two postures of Uke in Judo. The subjects, who were one male judoka(YH) for 1992 Barcelona Olympic Games, and one male trainee Y. I. University representative member(SDK) and were filmed on two S-VHS 16 mm video cameras(60fields/sec.), that posture of Uke were Shizenhontai(straight defensive posture) and Jigohontai(straight natural posture), VRL of Uke were 0% and 100%. The kinematical variables were temporal(total time-required: TR), potures and COG variables etc., The data of this study collection were digitized by SIMI Motion Program computed the mean values and the standard deviation calculated for each variables. When performing according to each posture and VRL, from the data analysis and discussion, the conclusions were as follows : 1. Temporal variables total time-required(TR) when performing Uchimata was shown the shortest time YH than SDK by each posture and VRL. TR of each posture were shown the shorten trends or equal in DP by lower than NP, In existence and / or nonexistence of VRL was shown the shorten trends in VRL 0% than 100% of Uke. 2. Posture variables : In attacking right knee angle, YH was performing flexion($147{\rightarrow}103degree$) from Tsukuri(set-up) to Kake(execution) in regardless of postures and VRLs, SDK was performing not exchange extension and flexion in VRL 100%, and extension($120{\rightarrow}142degree$) in VRL 0%, respectively. In supporting left hee angle, YH was performing extension($119{\rightarrow}163degree$) from Tsukuri(set-up) to Kake(at(execution) in regardless of postures and VRLs, SDK extension($93{\rightarrow}139degree$), respectively. In attacking right hip angle, from Tsukuri to Kake, YH was performing extension($133{\rightarrow}169degree$), except in VRL 0%($156{\rightarrow}137degree$) NP, SDK was performing flexion($159{\rightarrow}126degree$) accept in VRL 100%($149{\rightarrow}152degree$) NP, In left hip angle, from Tsukuri to Kake, YH was performing flexion NP(70, 50degree) more than DP(27, 57degree), SDK was performing flexion DP(73, 52degree) more than NP(34, 20degree). 3. COG variables : When performing Uchimata, vertical COG variables was shown YH(:$2{\sim}8cm$), SDK(:$15{\sim}24cm$) lower than Uke's COG level position, in existence and / or nonexistence of postures and VRL, during Kake as maximum force point of throwing techniques in Judo.

A Kinematic Analysis of Uchi-mata(inner thigh reaping throw) by Kumi-kata types in Judo (유도 맞잡기 타입에 따른 허벅다리걸기의 Kinematic 분석[I])

  • Kim, Eui-Hwan;Cho, Dong-Hee;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.63-87
    • /
    • 2002
  • The purpose of this study was to analyze the kinematic variables when Uchi-mata(inner thigh reaping throw) performing by Kumi-kata(engagement position, basic hold) types A, B(A: grasping part-behind neck lapel, B: chest lapel) in Judo with three dimensional analysis technique DLT method by videography. The subjects were four male judokas who have been training in Yong-In University(YIU), on Korean Representative level and Uchi-mata is their tokui-nage(favorite technique), the throwing form was filmed on two S-VHS 16mm video camera( 30frame/sec. Panasonic). Kinematic variables were temporal, posture, and COG. The data collection was performing by Uchi-mata. Six good trials were collected for each condition (type A, B) among over 10 trials. The mean values and the standard deviation for each variable were obtained and used as basic factors for examining characteristics of Uchi-mata by Kumi-kata types. The results of this analysis were as follows : 1) Temporal variables The total time elapsed(TE) by Uchi-mata of types A, B were 1.45, 1.56 sec. respectively. Types A shorter than B. 2) Posture variables In performing of Uchi-mata, the range of flexion in type A, left elbow was $45^{\circ}$ and B was $89^{\circ}$ from Event 2(E2) to Event 6(E6). Type A and B were quite different in right elbow angle in Event1(E1). Left shoulder angle of type A was extended and type B was flexed in E4. Both types right shoulder angles were showed similar pattern. Also both hip angles(right/left) were showed similar pattern. When type A performed Uchi-mata the knee-angle of supporting foot showed $142^{\circ}$in the 1st stage of kake phase[KP], and extended to $147^{\circ}$in the 2nd stage of KP. And the foot-ankle angle of supporting foot showed $83^{\circ}$in the 1st stage of KP, and extended to $86^{\circ}$in the 2nd stage of KP. moreover, The knee angle of attacking foot showed $126^{\circ}$in the 1st stage of KP, and extended to $132^{\circ}$in the 2nd stage of KP, and the foot-ankle angle of attacking foot showed $106^{\circ}$in the 1st stage of KP, and extended to $121^{\circ}$in the 2nd stage of KP. When type B performed Uchi-mata the knee-angle of supporting foot showed $144^{\circ}$in the 1st stage of KP, and extended to $154^{\circ}$in the 2nd stage of KP. And the foot-ankle angle of supporting foot showed $83^{\circ}$in the 1st stage of KP, and extended to $92^{\circ}$in the 2nd stage of KP. moreover, The knee angle of attacking foot showed $132^{\circ}$in the 1st stage of KP, and extended to $140^{\circ}$in the 2nd stage of KP, and the foot-ankle angle of attacking foot showed $103^{\circ}$in the 1st stage of KP, and extended to $115^{\circ}$in the 2nd stage of KP. During Uchi-mata performing, type A showed pulling pattern and type B showed lift-pulling pattern. As Kumi-kata types, it were different to upper body(elbow, shoulder angle), but mostly similar to lower body(hip, knee, ankle angle) on both types. 3) C. O. G. variables When the subjects performed Uchi-mata, COG of type A, B up and down in vertical aspect was 71cm, 73.8cm in height from the foot in the 2nd stage of KP. As Kumi-kata types, it were different on medial-lateral direction aspect but weren't different in Kuzushi phase on vertical direction aspect.

A Case Study on Center of Gravity Analysis when Performing Uchimata by Posture and Voluntary Resistance Levels of Uke in Judo[ll] (유도 허벅다리걸기 기술발휘 시 받기의 자세와 저항수준에 따른 중심변인 분석 사례연구[II])

  • Kim, Eui-Hwan;Kim, Sung-Sup;Chung, Chae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.237-257
    • /
    • 2005
  • It was to study as a following-research of "A Case Study on Center of Gravity(COG) Analysis when Performing Uchimata(inner thigh reaping throw) by Posture and Voluntary Resistance Levels(VRL) of Uke in Judo[I]". The purpose of this study was to analyze the COG variables when performing uchimata(inner thigh reaping throw) by two postures and voluntary resistance levels(VRL) of uke(reciver) in Judo. The subjects, who were one male judoka(YH) for 1992 Barcelona Olympic Games Olympian(silver medalist), and one male trainee; Y.I.University representative member (SDK), and were filmed on two S-VHS 16mm video cameras(60fields/sec.) through 3-dimensional motion analysis methods, that postures of uke were shizenhontai (straight natural posture) and jigohontai(straight defensive posture), VRL of uke were 0% and 100%, respectively. The kinematical variable was COG variable, distance of COG, and distance of resultant COG between uke and tori(the thrower), velocity and acceleration of COG. The data of this study collection were digitized by SIMI Motion Program computed the mean values and the standard deviation calculated for each variables. When performing uchinmata according to each posture and VRL of uke and classifying. From the data analysis and discussion, the conclusions were as follows : 1. Displacement of COG Subject YH, COG was the highest in kuzushi(balance -breaking), vertical COG was low when following in tsukuri(positioning; set-up), kake(application; execution), and COG was pattern of same character each postures and resistance, respectively. Subject SDK, COG was low from kumikata(engagement positioning) to kake, and COG was that each postures and resistance were same patterns, respectively. Subject YH, SDK, each individual, postures and resistance, vertical COG was the lowest in kake phase, when performing. 2. Distance of COG between uke and tori The distance of COG between uke and tori when performing, subject YH was $0.64{\sim}0.70cm$ in kumikata, $0.19{\sim}0.28cm$ in kake, and SDK was $0.68{\sim}0.72cm$ in kumikata, $0.30{\sim}0.42\;cm$ in kake. SDK was wider than YH. 3. Distance of resultant COG between uke and tori The distance of resultant COG between uke and tori when performing, subject YH was $0.27{\sim}0.73cm$ from kumikata to kake. and SDK was $0.14{\sim}0.34cm$ in kumikata, $0.28{\sim}0.65cm$ in kake. Jigohontai(YH:$0.43{\sim}0.73cm$,SDK:$0.59{\sim}0.65cm$) was more moved than shizenhontai(YH:$0.27{\sim}0.53cm$, SDK: $0.28{\sim}\;0.34cm$). 4. Velocity of COG The velocity of COG when performing uchimata, subject YH was fast anterior-posterior direction in kuzushi, ant.-post. and vertical direction fast in tsukuri and kake. SDK was lateral, ant.-post. and vertical direction in kuzushi, ant.-post. and vertical direction in tsukuri and ant.-post. direction in take, respectively. 5. Acceleration of COG The acceleration of COG when performing uchimata, The trend of subject YH was showed fast vertical direction in kuzushi and tsukuri, ant.-post. and vertical direction fast in kake. The trends of SDK showed lateral direction in kuzushi, lateral and ant.-post. direction in tsukuri and ant.-post. direction in kake, respectively.

A Case Study of Angular Momentum of Trunk and Lower extremity when Performing Uchimata by Posture and Voluntary Resistance Levels of Uke in Korean Judo Olympian[III] (유도 올림피언 허벅다리걸기 기술발휘 시 받기의 자세와 저항수준에 따른 몸통과 하지의 각운동량 분석 사례연구[III])

  • Kim, Eui-hwan;Kim, Sung-sup;Chung, Chae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.191-203
    • /
    • 2005
  • It was to study a following research of "A Kinematical Traits Analysis when Performing Uchimata(inner thigh reaping throw) by Posture and Voluntary Resistance Levels(VRL) of Uke in Judo[1]" and. "A Case Study of Center of Gravity(COG) when Performing Uchimata(inner thigh reaping throw) by Posture and Voluntary Resistance Levels(VRL) of Uke in Judo[II]". The purpose of this study was to analyze an angular momentum of trunk and lower extremity when performing uchimata by two postures and voluntary resistance levels(VRL) of uke(reciver) in Judo. The subjects, who were one male judoka(YH) for 1992 Barcelona Olympic Games Olympian(silver medalist), was filmed on two S-VHS 16mm video cameras(60fields/sec.) through 3-dimensional motion analysis methods, that postures of uke were shizenhontai (straight natural posture:NP) and jigohontai (straight defensive posture:DP), VRL of uke were 0% and 100%, respectively. The variables were angular momentum of trunk, lower extremity of attacking leg and supporting leg of tori(the thrower). The data of this study collection were digitized by SIMI Motion Program computed the mean values and the standard deviation calculated for each variables. When performing uchimata according to each posture and VRL of uke and classifying. From the data analysis and discussion, the conclusions were as follows : Angular momentum of trunk when performing uchimata was showed the largest among another angular momenta, and the posture displayed more different than resistant of uke(reciver), but the pattern similar in judo. Angular momentum of trunk of X axis was the largest and Y, Z axis order. Angular momentum of attacking the thigh-leg when performing uchimata was showed the largest among another angular momenta, and the posture displayed more different than resistant of uke(reciver), X axis and Y axis similar, but angular momentum of Z axis of thigh-leg the largest, in kake(application) event in 0% resistance of DP than other variables. Angular momentum in X,Y axis of attacking the lower-leg when performing uchimata was showed that the resistance level displayed more different than posture, but Z axis the largest, in kake(E3) phase in 0% resistance of DP than other variables as same thigh-leg, and the largest from tsukuri(set-up:E2) to kake(E3) phase. X and Z axis Angular momentum of supporting the thigh-leg were similar, regardless of posture and resistance of uke, but Y axis was resistance level. Angular momentum of supporting the thigh-leg was showed the largest in X axis, increased from EO event to E2, and decreased in E3, and angular momenta of Y, X axis were showed the largest in kuzushi(balance breaking) phase when performing uchimata. Angular momentum of supporting the lower leg were similar pattern, regardless of posture and resistance of uke, in Y axis, resistance displayed more difficult the position in NP, and showed opposite angular momentum in tsukuri phase. In conclusion, angular momentum of trunk when performing uchimata was showed the largest, and pattern was similar, regardless of posture than resistant of uke(reciver), magnitude and direction were different each other, and uchimata was Ashi -waza(foot and leg techniques) division but important of trunk action.