• Title/Summary/Keyword: 핵심인자

Search Result 278, Processing Time 0.031 seconds

Impact Analysis of R&D Activity on GDP through S&T Papers and Patents (연구개발(R&D)활동이 GDP에 미치는 영향 분석: 과학기술논문과 특허의 매개를 통하여)

  • Kim, In Ja;Oh, Yun Jung;Kim, Yeon Hee
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.3
    • /
    • pp.658-685
    • /
    • 2016
  • In technology economic theory, technology innovation through R&D is regarded as a core element of economic growth. This research analyzes how R&D input factor (R&D as a percentage of GDP, total number of researchers, the proportion of science and engineering degree) affects GDP, economic outcome variable, through mediating variable (S&T papers, patent registration). The most effective variable among R&D activity variables is following order: the number of S&T papers (0.967), the total number of researchers (0.373), the proportion of R&D expenditure (0.191), the number of patent registration (0.049), the proportion of science and engineering degree (0.007). It is that the proportion R&D expenditure and the total number of researchers shows greater indirect impact through S&T papers and patent than the direct impact on GDP. This implies the importance of high-quality human resources training and the necessity of maintaining the scale of R&D fund or the importance on GDP. Moreover, S&T papers turns out to have the greatest effect on GDP and implies new outcome and value by sharing and expanding new knowledge and technology created by R&D

Anti-Oxidative, Anti-Inflammatory, and Anti-Melanogenic Activities of Endlicheria Anomala Extract (Endlicheria anomala (Nees) Mez 추출물의 항산화, 항염증 및 미백 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.433-441
    • /
    • 2013
  • In this study, the anti-oxidative, anti-inflammatory, anti-melanogenic activities of Endlicheria anomala (Nees) Mez methanol extract (EAME) were evaluated by use of in vitro assays and cell culture model systems. The results revealed that EAME scavenges various radicals such as 1,1-diphenyl-2-picryl hydrazyl hydrogen peroxide induced reactive oxygen species, and lipopolysaccharide induced nitric oxide. Furthermore, EAME induced the expression of anti-oxidative enzymes such as heme oxygenase 1, thioredoxin reductase 1, NAD(P)H dehydrogenase 1, and their upstream transcription factor, nuclear factor-E2-related factor 2. Moreover, EAME inhibited in vitro DOPA oxidation and 3-isobutyl-1-methylxanthine induced melanogenesis in B16F10 cells. Its anti-melanogenic activity will have originated from the inhibition of tyrosinase enzyme activity and melanogenesis related protein expression. Taken together, these results provide the important new insight that E. anomala possesses various biological activities such as anti-oxidative, anti-inflammatory, and anti-melanogenic. Therefore, it might be utilized as a promising material in the fields of nutraceuticals and cosmetics.

Protective Effects of Pyrus pyrifolia NAKAI Leaf Extracts on UVB-induced Toxicity in Human Dermal Fibroblasts (자외선B 노출로 인해 손상된 피부세포에 대한 돌배나무잎 추출물의 보호효과)

  • Koh, Ara;Choi, Songie;Kim, Yong-ung;Park, Gunhyuk
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.87-94
    • /
    • 2016
  • Skin damage is mainly caused by environmental factors such as ultraviolet light, heat, and smoking. It is known that reactive oxygen species production is commonly involved in the pathogenesis of skin damage induced by these factors, causing skin aging. Pyrus pyrifolia Nakai continues to be a popular and highly consumed fruit in many countries with known beneficial effects including antitumor, antioxidative, and anti-inflammatory effects. However, there is no evidence of a therapeutic effect of Pyrus pyrifolia extract (PPE) against skin aging via inhibition of mitochondria-mediated apoptosis. In this study, we investigated PPE protective effect against photoaging induced by UVB ($50mJ/cm^2$) in HS68 human dermal fibroblasts. Lactate dehydrogenase assay showed that PPE significantly protected HS68 cells against UVB-induced damage in a dose-dependent manner. Other assays using DCF-DA demonstrated that PPE protected HS68 cells by regulating reactive oxygen species production. PPE also regulated mitochondrial dysfunction and mitochondrial membrane potential induced by UVB, and inhibited UVB-induced caspase-3 activity. These results indicate that PPE protects human dermal fibroblasts from UVB-induced damage by regulating the oxidative defense system.

Effects of Paf1 complex components on H3K4 methylation in budding yeast (출아효모에서 Paf1 복합체의 구성원들이 H3의 네번째 라이신의 메틸화에 미치는 영향)

  • Oh, Jun-Soo;Lee, Jung-Shin
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.487-494
    • /
    • 2016
  • In Saccharomyces cerevisiae, Paf1 complex consists of five proteins, and they are structurally and functionally well conserved in yeast, fruit fly, plants, and human. With binding to RNA polymerase II from transcription start site to termination site, Paf1 complex functions as a platform for recruiting many types of transcription factors to RNA polymerase II. Paf1 complex contributes to H2B ubiquitination and indirectly influences on H3K4 di- and tri-methylation by histone crosstalk. But the individual effects of five components in Paf1 complex on these two histone modifications including H2B ubiquitination and H3K4 methylation largely remained to be identified. In this study, we constructed the single-gene knockout mutants of each Paf1 complex component and observed H3K4 mono-, di-, and trimethylation as well as H2B ubiquitination in these mutants. Interestingly, in each ${\Delta}paf1$, ${\Delta}rtf1$, and ${\Delta}ctr9$ strain, we observed the dramatic defect in H3K4 monomethylation, which is independent of H2B ubiquitination, as well as H3K4 di- and trimethylation. However, the protein level of Set1, which is methyltransferase for H3K4, was not changed in these mutants. This suggests that Paf1 complex may directly influence on H3K4 methylation by directly regulating the activity of Set1 or the stability of Set1 complex in an H2B ubiquitination independent manner.

The Structural and Functional Role of p53 as a Cancer Therapeutic Target (암 치료 표적으로서 p53의 구조적 및 기능적 역할)

  • Han, Chang Woo;Park, So Young;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.488-495
    • /
    • 2018
  • The p53 gene plays a critical role in the transcriptional regulation of cellular response to stress, DNA damage, hypoxia, and tumor development. Keeping in mind the recently discovered manifold physiological functions of p53, its involvement in the regulation of cancer is not surprising. In about 50% of all human cancers, inactivation of p53's protein function occurs either through mutations in the gene itself or defects in the mechanisms that activate it. This disorder plays a crucial role in tumor evolution by allowing the evasion of a p53-dependent response. Many recent studies have focused on directly targeting p53 mutants by identifying selective, small molecular compounds to deplete them or to restore their tumor-suppressive function. These small molecules should effectively regulate various interactions while maintaining good drug-like properties. Among them, the discovery of the key p53-negative regulator, MDM2, has led to the design of new small molecule inhibitors that block the interaction between p53 and MDM2. Some of these small molecule compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, more personalized anti-carcinogenic medicines. Here, we review the structural and functional consequences of wild type and mutant p53 as well as the development of therapeutic agents that directly target this gene, and compounds that inhibit the interaction between it and MDM2.

Histone H3 Lysine Methylation in Adipogenesis (Adipogenesis에서 히스톤 H3 lysine methylation)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.713-721
    • /
    • 2020
  • Adipogenesis as a model system is needed to understand the molecular mechanisms of human adipocyte biology and the pathogenesis of obesity, diabetes, and other metabolic syndromes. Many relevant studies have been conducted with a focus on gene expression regulation and intracellular signaling relating to Peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are master adipogenic transcription factors. However, epigenome regulation of adipogenesis by epigenomic modifiers or histone mutations is not fully understood. Histone methylation is one of the major epigenetic modifications on gene expression in mammals, and histone H3 lysine methylation (H3Kme) in particular implicates cell differentiation during various tissue and organ development. During adipogenesis, cell type-specific enhancers are marked by histone H3K4me1 with the active enhancer mark H3K27ac. Mixed-lineage leukemia 4 (MLL4) is a major H3K4 mono-methyltransferase on the adipogenic enhancers of PPARγ and C/EBPα loci. Thus, MLL4 is an important epigenomic modifier for adipogenesis. The repressive mark H3K27me3 is mediated by the enzymatic subunit Enhancer zeste homolog 2 (EZH2) of the polycomb repressive complex 2. EZH2-mediated H3K27 tri-methylation on the Wnt gene increases adipogenesis because WNT signaling is a negative regulator of adipogenesis. This review summarizes current knowledge about the epigenomic regulation of adipogenesis by histone H3 lysine methylation which fundamentally regulates gene expression.

Economic Evaluation with Uncertainty Analysis of Glycerol Steam Reforming for the H2 Production Capacity of 300 m3 h-1 (수소 생산 규모 300 m3 h-1급 글리세롤 수증기 개질반응에 대한 경제적 불확실성 분석)

  • Heo, Juheon;Lee, Boreum;Kim, Sehwa;Kang, Sung-Mook;Lim, Hankwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.589-593
    • /
    • 2018
  • In this paper, an economic evaluation with the uncertainty analysis using a Monte-Carlo simulation method was performed for the glycerol steam reforming to produce $H_2$ at a capacity of $300m^3h^{-1}$. Fluctuations in a unit $H_2$ production cost were identified based on the variation of key economic factors at ${\pm}10-{\pm}40%$ and the probability of 30.9% was obtained for a previously reported unit $H_2$ production cost of 5.10 $ $kgH{_2}^{-1}$. In addition, fluctuations in the B/C ratio were obtained by varying the fixed capital investment (${\pm}20%$), cost of manufacturing (${\pm}20%$), revenue (${\pm}20%$), and discount rate (2-10%) and the probability ranging from 17 to 55% was observed to meet a minimum B/C ratio of 1 for the economic feasibility of the glycerol steam reforming to produce $H_2$.

Effects of Ethanol Extract from Lathyrus palustris on Anti-inflammation Response of RAW 264.7 Cell (RAW 264.7 대식세포 염증반응에 대한 털연리초 에탄올 추출물의 항염증 효과)

  • Nam, Jung Hwan
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.287-292
    • /
    • 2020
  • Lathyrus palustris often used as a treatment for inflammation of the kidneys in Korean traditional medication. Generally, drugs for arthritis have anti-inflammatory and antinociceptive properties. However, the validity of the anti-inflammatory effect has not been scientifically investigated so far. Therefore, the purpose of the research was to investigate the latent anti-inflammatory ability of L. palustris using the ethanol extract. To evaluate the anti-inflammatory activities, we examined the inflammatory arbitrators such as a nitric oxide (NO) and prostaglandin E2 (PGE2) on RAW 264.7 cells. Our results indicated that ethanol extract significantly inhibited the lipopolysaccharide E (LPS) derived PGE2 production in RAW 264.7 cell. The inhibitory activity of ethanol extract for PGE2 tests with inhibition ratio showed in 40 ㎍/mL. Overall, PGE2 tests had a higher inhibitory effect on inflammation than NO tests. This result anticipated that the ethanol extract from L. palustris is a good candidate for developing the origin of anti-inflammatory agents.

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Anti-Oxidative and Anti-Obesity Activities of Tetrapanax papyriferus and Siegesbeckia pubescens Extracts and their Synergistic Anti-Obesity Effects (통초.희렴 추출물의 항산화.항비만 활성 및 혼합물의 항비만 시너지 효과)

  • Park, Jung Ae;Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.341-349
    • /
    • 2013
  • In this study, the anti-oxidative and anti-obesity activities of two medicinal herb extracts, Tetrapanax papyriferus (TP) and Siegesbeckia pubescens (SP), were evaluated using DPPH radical scavenging activity assay, lipase enzyme inhibition assay, and the cell culture model system. Both methanol extracts of TP and SP showed DPPH radical scavenging activities dose-dependently, and the $IC_{50}$ of DPPH radical scavenging activities of the two medicinal herbs were 65.23 and 47.79 ${\mu}g/ml$, respectively. Furthermore, both extracts suppressed effectively lipase enzyme activity dose-dependently. Moreover, TP and SP extracts significantly suppressed adipocyte differentiation, lipid accumulation, triglyceride (TG) contents on 3T3-L1 preadipocytes in a dose-dependent manner without cytotoxicity. Their anti-obesity effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$ and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene and protein expressions. Furthermore, TP and SP possessed a synergistic effect on anti-obesity activity. The identification of the active compounds that confer the anti-obesity activity of TP and SP might be needed.