Engineering Approach to Crop Production in Space

우주에서 작물 생산을 위한 공학적 접근

  • Kim Yong-Hyeon (Division of Bioresource Systems Engineering, Chonbuk National University)
  • 김용현 (전북대학교 생물자원시스템공학부)
  • Published : 2005.09.01

Abstract

This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

본고에서는 우주에서 장기간에 걸쳐 임무를 수행하는 인간의 생명지원을 목적으로 CELSS를 이용한 식물생산, 물과 공기의 정화 및 재생, 폐기물 처리 등을 위한 공학적 접근을 검토하였다. 이러한 공학적 접근에는 미소중력 또는 저압과 같은 우주 환경에 적용 가능한 폐쇄형 식물생산 시스템, 물질 순환, 물의 재생, 폐기물의 처리, 미량 유해가스의 제거, 조명, 배양액의 공급 등이 포함된다. 우주에서 재배 가능한 작물의 선택 기준으로 높은 생산성, 식용성, 소화성, 조리성, 자동화 가능성, 짧은 줄기, 높은 증산속도 등이 제기되고 있다. 화성 표면에서의 낮은 압력은 작물 생산용 온실을 설계할 때 주요 장애물에 해당한다. 때문에 저압하에서 식물 재배가 가능한 팽창식 온실의 개발에 관심이 집중되고 있다. 팽창식 온실의 구조, 내부 압력, 자재, 조명 방식, 방사선 차폐 등은 주요 설계 인자에 해당한다. 팽창식 온실 내의 낮은 압력은 구조물의 질량과 가스의 누출속도를 줄일 수 있다. 저압 조건에서는 증산속도가 급격하게 증가하여 식물의 수분요구도가 높게 나타난다. 증산 또는 수경재배시스템으로부터의 증발에 의해서 수분이 대기 중으로 방출될 때 증기압이 증가한다. 저압 조건에 있는 폐쇄계에서는 증기압의 변화가 전체 압력에 커다란 영향을 미친다. 그러므로 저압 조건의 수경재배시스템은 누수로 인하여 기화되는 수분 손실을 줄이기 위해서 고도로 밀폐되어야 한다. 또한 저압으로 유지되는 온실내의 상대습도를 높게 유지할 수 있는 환경제어 기술이 개발되어야 한다. 향후 폐쇄생태계 생명유지 시스템의 핵심 기술은 우주뿐만 아니라 지구상의 사막, 극지방 또는 해저와 같은 열악한 환경 조건에서도 생명 지원을 가능케 할 것이다.

Keywords

References

  1. Allen, J. and M. Nelson. 1999. Biospherics and Biosphere 2, mission one (1991-1193). Ecological Engineering 13:15-29
  2. Andre, M. and Ch. Richaux. 1985. Can plants grow in a quasi-vacuum? In: R.D. MacElroy, M.V. Martello, and D.T. Smernoff (eds.) CELSS Workshop. NASA Technical Memorandum 88215. NASA Ames Research Center, Moffett Field, CA
  3. Ash, R.L., W.L. Dowler, and G. Varsi. 1978. Feasibility of rocket propellant production on Mars. Acta Astronautica 5:705-724 https://doi.org/10.1016/0094-5765(78)90049-8
  4. Bennet, P.B. and M. McLeod. 1984. Probing the limits of human deep diving. Philos. Trams. Roy. Soc. Land. B. Biol. Sci. 304: 105-118 https://doi.org/10.1098/rstb.1984.0013
  5. Brown, D. and RE. Lacey. 2002. A distributed control system for low pressure plant growth chambers. ASAE Paper No.02-3078
  6. Brown, C.S., W.M. Cox, T.W Dreschel, and P.V. Chetirkin. 1992. The vacuum-operated nutrient delivery system: Hydroponics for microgravity. HortScience 27:1183-1185
  7. Bucklin, R.A., J.D. Leary, Y. Rygalov, Y. Mu, and P.A. Fowler. 2001. Design parameters for Mars deployable greenhouse. Paper 011CES-307. International Conference on Environmental Systems, July 2001, Orlando, FL. Society of Automotive Engineers
  8. Bucklin, R.A., P.A. Fowler, V.Y. Rygalov, R.M. Wheeler, Y. Mu, I. Hublitz, and E.G. Wilkerson. 2004. Greenhouse design for the Mars environment: Development of a prototype, deployable dome. Acta Horticulturae 659:127-134
  9. Bugbee, B.G. and F.B. Salisbury, 1986. Studies on maximum yield of wheat for the controlled environments of space. CELSS Workshop NASA, TM 882215:447-485
  10. Bula, R.J., T.W Tibbits, R.C. Morrow, and W.R. Dimauer. 1992. Commercial invoivement in the development of space-based plant growing technology. Adv. Space Res. 12(5):5-10
  11. Bula, R.J., R.C. Morrow, and T.W Tibbits. 1996. Potato growth in a porous tube water and nutrient delivery system. Adv. Space Res. 18(4/5):243-249 https://doi.org/10.1016/0273-1177(95)00884-H
  12. Chamberlian, C.P., M.A. Stasiak, and M.A. Dixon. 2003. Response of plant water status to reduced atmospheric pressure. ICES Paper 2003-01-2677. international Conference on Environment Systems, July 2003. Vancouver, BC, Canada. Society of Automotive Engineers
  13. Clark, B.C. 1979. The Viking results - The case for man on Mars. Adv. Astronaut. Sci. 38:263-278
  14. Clawson, J.M., A. Hoehn, L.S. Stodiek, and P. Todd. 1999. AG-Pod - The integration of existing technologies for efficient affordable space flight agriculture. SAE technical paper 1999-01-2176, 29th International Conference on Environmental Systems, Denver, CO
  15. Corey, K.A., D.J. Barta, and D.L. Henninger. 1997. Photosynthesis and respiration of a wheat stand at reduced atmospheric pressure and reduced oxygen. Adv. Space Res. 20( 10): 1869-1877 https://doi.org/10.1016/S0273-1177(97)00854-5
  16. Corey, K.A., P.A. Fowler, and R.M. Wheeler. 2000. Plant responses to rarified atmospheres. NASA Technical Memorandum 2000-208577. p.48-57
  17. Corey, KA, D.J. Barta, and R.M. Wheeler. 2002. Toward Martian agriculture: Response of plants to hypobaria. Life Support & Biosphere Science 8: 103-114
  18. Daunicht, H.J. and H.J. Brinkjans. 1992. Gas exchange and growth of plants under reduced air pressure. Adv. Space Res. 12(5):107-114
  19. Dempster, W.F. 1989. Biosphere 2: Technical overview of a manned closed ecological system. SAE Technical Paper 891599, 19th Intersociety Conference on Environmental Systems, San Diego, CA
  20. Dempster, W.F. 1993. Biosphere 2: System dynamics and observations during the initial two-year closure trial. SAE Technical Paper 932290, 23rd International Conference on Environmental Systems, Colorado Springs, CO
  21. Dempster, W.F. 1994. Methods for measurement and control of leakage in CELSS and their application and performance in the Biosphere 2 facility. Adv. Space Res. 14(11):331-335 https://doi.org/10.1016/0273-1177(94)90318-2
  22. Dempster, WF. 1999. Biosphere 2 engineering design. Ecological Engineering 13:31-42 https://doi.org/10.1016/S0925-8574(98)00090-1
  23. Dreschel, T.W, C.S. Brown, We. Piastuch, C.R. Hinkle, and W.M. Knott. 1994. Porous tube plant nutrient delivery system development: A device for nutrient delivery in microgravity. Adv. Space Res. 14(11):47-52
  24. Dreschel, T.W, C.W. Carlson, H.W Welts, K.F. Anderson, W.M. Knott, and W. Munsey. 1993. Physical testing for the microgravity plant nutrient experiment. ASAE Paper No. 934007
  25. Dreschel, T.W and J.C. Sager. 1989. Control of water and nutrients using a porous tube. A method for growing plants in space. HortScience 24:944-947
  26. Drysdale, A.E. and A.J. Hanford. 1999. Advanced life support systems modeling and analysis project baseline values and assumptions document, CTSD-ADV-371. Crew and thermal systems division, NASA Johnson Space Center, Houston, Texas
  27. Dubay, D.T. 1988. Gaseous emissions from plants in controlled environment. In: NASA/ASEE Summer Faculty Fellowship program. Research Reports 1-18
  28. Eckart, P. 1996. Spaceflight life support and biospherics. Space technology library, Microcosm Press, California
  29. Edden, M. and D. Henninger. 1991. Regenerative life support systems(RLSS) test bed performance: Characterization of plant performance in a controlled atmosphere. SAE Technical Paper No.911426
  30. ESA, 2005. http://www.esa.int/esaCP/SEMOBUV797E index_ 0.html
  31. Ferl, R.J., A.C. Schuerger, A. Paul, W.B. Gurley, K.A. Corey, and R.A Bucklin. 2002. Plant adaptation to low atmospheric pressures: Potential molecular responses. Life Support & Biosphere Science 8:93-101
  32. Folsome, C. and J. Hanson. 1986. The emergence of materially closed system ecology. In: Polunin, N. (Ed.), Ecosystem Theory and Application, Wiley, New York
  33. Fowler, P.A., R.M. Wheeler, R.A. Bucklin, and K.A. Corey. 2000. Low pressure greenhouse concepts for Mars. NASA Technical Memorandum 2000-208577. p.116-123
  34. Fyfield, T.P., R.C. Hardwick, and R.A. Cole. 1984. Plant damage and death caused by plastics containing the plasticiser dibutylphthalate. Biotronics 13:39-41
  35. Gitelson, I.I., LA. Terskov, B.G Kovrov, F.Y Sidko, GM. Lisovsky, Y.N. Oklandnikov, V.N. Belyanin, I.N. Trubachov, and M.S. Rerberg. 1976. Life support system with autonomous control employing plant photosynthesis. Acta Astronautica 3:633-650 https://doi.org/10.1016/0094-5765(76)90103-X
  36. Goto, E., Y Arai, and K. Omasa. 2002. Growth and development of higher plants under hypobaric conditions. Paper 021CES-2286. International Conference on Environmental Systems, July 2001. San Antonio, TX
  37. Hardwick, R.C., R.A. Cole, and T.P. Fyfield. 1984. Injury to and death of cabbage (Brassica oleracea) seedlings caused by vapours of dibutylphthalate emitted from certain plastics. Ann. Appl. Biol. 106:97-105
  38. Hoff, J., J. Howe, and C. Mitchell. 1982. Nutritional and cultural aspects of plant species selection for a regenerative life support system. NASA CR-166324
  39. Hublitz, I., D.L. Henninger, B.G Drake, and P. Eckart. 2004. Engineering concepts for inflatable Mars surface greenhouses. Adv. Space Res. 34(7): 1546-1551 https://doi.org/10.1016/j.asr.2004.06.002
  40. Hunter, J.B. 1999. Best advanced life support crops. Advanced life support status telecon, November 18, 1999, Cornell University, NASA Johnson Space Center, Houston, Texas
  41. Janik, D.S., R.L. Sauer, and Y.R. Thorstenson. 1987. Medical effects of iodine disinfection products in spacecraft water. SAE Technical Paper No.87 1490
  42. Janik, D.S., W.J. Crump, B.A. Macler, T. Wydeven, and R.L. Sauer. 1989a. Problems in water recycling for space station freedom and long duration life support. SAE Technical Paper No.89 1539
  43. Janik, D.S., B.A. Macler, Y.R. Thorstenson, R.L. Sauer, and R.D. MacElroy. I989b. Effects of iodine disinfection products on higher plants. Adv. Space Res. 9(8):117-122
  44. Johnson, C.C. and T. Wydeven. 1985. Wet oxidation of a spacecraft model waste. SAE Technical Paper No.851372
  45. Kang, D. 1999. Simulation of the water cycle in Biosphere 2. Ecological Engineering 13:301-311 https://doi.org/10.1016/S0925-8574(98)00106-2
  46. Kaplan, D. 1988. Environment of Mars, 1988. NASA technical memorandum 100470, NASA Johnson Space Center, Houston, Texas
  47. Kennedy, K.J. 2000. Inflatable habitats technology development. NASA Technical Memorandum 2000208577. p.64-76
  48. Kim, Y.H. and R.A. Bucklin. 2005. Engineering approach for plant production in closed ecological life support system. Proceedings of the Korean Society for Agricultural Machinery 2005 Winter Conference 10(1 ):49-53
  49. Kiota, M., A. Tani, K. Murakami, T. Hirano, and I. Aiga. 1995. Utilization of higher plants in bioregenerative life support system. CELSS 7(2):27-34
  50. Kitaya, Y., A. Tani, M. Kiyota, and I. Aiga. 1994. Plant growth and gas balance in a plant and mushroom cultivation system. Adv. Space Res. 14(11):281-284
  51. Koontz, H.V., R.P. Prince, and W.L. Berry. 1990. A porous stainless steel membrane system for extraterrestrial crop production. HortScience 25(6):707
  52. Lacey, R., M. Drew, and R. Spanarkel. 2000. Low pressure systems for plant growth chamber. NASA Technical Memorandum 2000-208577. p.39-47
  53. MacElroy, R.D., M. Kliss, and C. Straight. 1992. Life support systems for Mars transit. Adv. Space Res. 12(5): 159-166
  54. McKay, C.P., O.B. Toon, and J.P. Kasting. 1991. Making Mats habitable. Nature 352:489-496 https://doi.org/10.1038/352489a0
  55. Merkeys, A.J., A.L. Mashinsky, R.S. Laurinachius G.S. Nechitalio, A.Y. Yaroshius, and E.A. Izupak. 1975. The development of seedling shoot under space flight conditions. Life Sci. Space Res. 13:53-57
  56. Merkeys, A.J. and R.S. Laurinavichius. 1990. Plant growth in space. In: Fundamentals of Space Biology. Ed. by Asashima, M. and GM. Malacinski. Japan Sci. Soc. Press p.69-83
  57. Meyer, T.R. 1981. Extraction of martian resources for a manned research station. J. British Interplanetary Soc. 34:285-288
  58. Meyer, T.R. and C.P. McKay. 1989. The resources of Mars for human settlement. J. British Interplanetary Soc. 42:147-160
  59. Morrow, R.C., R.J. Bula, and T.W. Tibbitts. 1987. Orbital light/dark cycle effects on plant growth. Space Life Sciences Symposium Proceedings, Washington, DC
  60. Muser, G and M. Alpert. 2000. How to go to Mars? Scientific American 282(3):40-51
  61. Musgrave, M.E., W.A. Gerth, H.W. Scheld, and B.R. Strain. 1988. Growth and mitochondrial respiration of mungbeans (Phaseolus aureus Roxb.) germinated at low pressure. Plant Physiol. 86: 19-22 https://doi.org/10.1104/pp.86.1.19
  62. NASA. 1996. Requirements and design considerations. Report Nr. JSC 38571, CTSD-ADV-245, NASA Johnson Space Center, Houston, Texas
  63. NASA. 2004. Mars fact sheet. http://nssdc.gsfc.nasa.gov/planetary /factsheet/marsfact. html
  64. Nebot, A., F.E. Cellier, and F. Mugica. 1999. Simulation of heat and humidity budgets of Biosphere 2 without air conditioning. Ecological Engineering 13:333-356 https://doi.org/10.1016/S0925-8574(98)00109-8
  65. Nelson, M., T. Burgess, A. Alling, N. Alvarez-Romo, W. Dempster, R. Walford, and J. Allen. 1993. Using a closed ecological system to study earth's biosphere: initial results from Biosphere 2. Adv. Space Res. 14( 11 ):417 -426
  66. Nitta, K., K. Otsubo, M. Oguchi, and T. Tanemura. 1988. Gas balancing method for minimizing the volume of oxygen and carbon dioxide reservoirs in CELSS. In: Proceedings of 16th International Symposium on Space Technology and Science. Sapporo 1731-1741
  67. Norton, B. 1987. The role of plant pathology in development of controlled ecological life support systems. Plant Dis. 71 :580-584 https://doi.org/10.1094/PD-71-0580
  68. Oguchi, M., K. Nitta, Y. Mochizuki, K. Tsuji, K. Fujimori, and K. Masuda. 1991. Organic waste processing using wet oxidation in CELSS. CELSS J. 3(1):17-24
  69. Olson, R.L., M.W Oleson, and T.J. Slavin. 1988. CELSS for advanced manned mission. HortScience 23(2):275-286
  70. Reiber, D.B. 1988. NASA Mars Conference. American Astronautical Society, San Diego, CA
  71. Rosenthal, Y., B. Famsworth, F.V.R. Romo, G. Lin, and B.D.V. Marino. 1999. High quality, continuous measurements of $CO_2$ in Biosphere 2 to assess whole mesocosm carbon cycling. Ecological Engineering 13 :249-262 https://doi.org/10.1016/S0925-8574(98)00102-5
  72. Rygalov, V.Y., P.A. Fowler, J.M. Metz, R.M. Wheeler, and R.A. Bucklin. 2002. Water cycles in closed ecological systems: Effects of atmospheric pressure. Life Support & Biosphere Science 8: 125-135
  73. Salisbury, F.B., J.I. Gitelson, and GM. Lisovsky. 1997. Bios-3: Siberian experiments in bioregenerative life support for space exploration. BioScience 47(9):575-586 https://doi.org/10.2307/1313164
  74. Sadeh, W.Z. and M.E. Criswell. 1993. Inflatable structures - A concept for Lunar and Martian structures, AIAA-93-0995. Center for Engineering Infrastructure and Sciences in Space (CEISS), Colorado State University, Fort Collins, Colorado
  75. Saunders, J.F., O.E. Reynolds, and F.J. de Serres. 1971. The experiments of Biosatellite II. In: Garvity and Organism, p.443-450, University of Chicago Press, Chicago
  76. Schuerger, A.C. 1998. Microbial contamination of advanced life support (ALS) systems poses a moderate threat to the long-term stability of space-based bioregenerative systems. Report 1069-9422/98, Dynamic Corporation, Life Science Program, Kennedy Space Center, Florida
  77. Schwartzkopf, S.H. and R.L. Mancinelli. 1991. Germination and growth of wheat in simulated Martian atmospheres. Acta Astronautica 25:245-247 https://doi.org/10.1016/0094-5765(91)90078-J
  78. Shen-Miller, L., R. Hinchman, and S.A. Gordon. 1968. Thresholds for georesponse to acceleration in gravitycompensated avena seedlings. Plant Physiol. 43:338-344 https://doi.org/10.1104/pp.43.3.338
  79. Siegel, S.M., L.A. Rosen, and C. Giumarro. 1963. Plants at sub-atmospheric oxygen-levels. Nature 198: 1288-1290 https://doi.org/10.1038/1981288a0
  80. Silverstone, S. and M. Nelson. 1996. Food production and nutrition in Biosphere 2: Results from the first mission September 1991-1993. Adv. Space Res. 18(4/ 5):49-61
  81. Sirko, R.J., G.C. Smith, L.A. Hamlin, R. Tazawa, T. Uchida, and S. Suzuki. 1994. Lunar base CELSS design and analysis. Adv. Space Res. 14( 11): 1 05-112
  82. Stanghellini, M.E. and S.L. Rasmussen. 1994. Identification and origin of plant pathogenic microorganisms in recirculating nutrient solutions. Adv. Space Res. 14( 11 ):349-355
  83. Suge, H. and I. Turkan. 1991. Can plants normally produce seeds under microgravity in space? Japan J. Crop Sci. 60(3):427-433 https://doi.org/10.1626/jcs.60.427
  84. Suzuki, S., R. Tazawa, A. Miya, T Adachi, R. Kanki, M. Toyobe, and M. Oguchi. 1994. Gas revitalization by microalgae. II. $CO_2/O_2$ gas exchange system. CELSS J. 7(1):29-34
  85. Sweeney, C. 1999. The diel carbon cycle of the Biosphere 2 ocean. Ecological Engineering 13:235-247 https://doi.org/10.1016/S0925-8574(98)00101-3
  86. Takahashi, Y. 1989. Water oxidation waste management system for a CELSS. Bio. in Space 3(1):45-54 https://doi.org/10.2187/bss.3.45
  87. Tibbits, T.W. and D.K. Alford. 1982. Controlled ecological life support systems; Use of higher plants. NASA Conference Publishing 2231, NASA Sci. Tech. Inf. Branch, Washington, DC
  88. Tibbits, T.W. and R.J. Bula. 1988. Growing plants in space. In: Horticulture in high technology era, May 10-11, 1988, Tokyo, Japan. p.133-142
  89. Tibbits, T.W. and R.M. Wheeler. 1987. Utilization of potatoes in bioregenerative life support systems. Adv. Spce Res. 7(4): 115-122
  90. Tibbits, T.W. and W.M. Hertzberg. 1978. Growth and epinasty of marigold plants maintained from emergence on horizontal clinostats. Plant Physiol. 61: 199-203 https://doi.org/10.1104/pp.61.2.199
  91. Tubiello, F.N., J.W. Druitt, B.D.V. Marino. 1999. Dynamics of the global water cycle of Biosphere 2. Ecological Engineering 13:287-300 https://doi.org/10.1016/S0925-8574(98)00105-0
  92. Wang, T.C. and J.L. Bricker. 1979. Combined temperature and water vapor effects on the lithium hydroxidecarbon dioxide reaction in underwater life support systems. Environment International 2:425-430 https://doi.org/10.1016/0160-4120(79)90019-9
  93. Wheeler, R.M. 1996. Gas balance in a plant-based CELSS. Plants in Space Biology 207-216
  94. Wheeler, R.M. 2000. Can $CO_2$ be used as a pressurizing gas for Mars greenhouse? NASA Technical Memorandum 2000-208577. p.58-63
  95. Wheeler, R.M., K.A. Corey, J.C. Sager, and W.M. Knott. 1993. Gas exchange characteristics of wheat stands grown in a closed, controlled environment. Crop Sciences 33( 1): 161-168 https://doi.org/10.2135/cropsci1993.0011183X003300010029x
  96. Wheeler, R.M., C.L. Mackowiak, G.W Stutte, J.C. Sager, N.C. Yorio, L.M. Ruffe, R.E. Fortson, T.W. Dreschel, W.M. Knott, and K.A. Corey. 1996. NASA's biomass production chamber: A testbed for bioregenerative life support studies. Adv. Space Res. 18(4/ 5):215-224
  97. Wheeler, R.M. and T.W. Tibbitts. 1986. Growth and tuberization of potato (Solanum tuberosum L.) under continuous light. Plant Physiol. 80:801-804 https://doi.org/10.1104/pp.80.3.801
  98. Wilson, J.W., J. Miller, A. Konradi, and F.A. Cucinotta. 1997. Shielding strategies for human space exploration. NASA Conference Publication 3360, Langley Research Center, Hampton, Virginia
  99. Wright, B.D. and A. Garcia. 1989. CELSS engineering: Proportional control of $CO_2$ using higher plant. SAE Technical Paper. No.891573
  100. Wright, B.D., W.C. Bausch, and W.M. Knott. 1988. A hydroponic system for microgravity plant experiments. Trans. ASAE 31 :440-446