References
- M. E. Sad, H. A. Duarte, C. Vignatti, C. L. Padro, and C. R. Apesteguia, Steam reforming of glycerol: Hydrogen production optimization, Int. J. Hydrogen Energy, 40, 6097-6106 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.043
- M. S. Masnadi, R. Habibi, J. Kopyscinski, J. M. Hill, X. Bi, J. Lim, N. Ellis, and J. R. Grace, Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels, Fuel, 117, 1204-1214 (2014). https://doi.org/10.1016/j.fuel.2013.02.006
- P. D. Vaidya and A. E. Rodrigues, Glycerol reforming for hydrogen production: A review, Chem. Eng. Technol., 32, 1463-1469 (2009). https://doi.org/10.1002/ceat.200900120
- X. Lv, J. Lin, L. Luo, D. Zhang, S. Lei, W. Xiao, Y. Xu, Y. Gong, and Z. Liu, Enhanced enzymatic saccharification of sugarcane bagasse pretreated by sodium methoxide with glycerol, Bioresour. Technol., 249, 226-233 (2018). https://doi.org/10.1016/j.biortech.2017.09.137
- A. Hejna, P. Kosmela, K. Formela, L. Piszczyk, and J. T. Haponiuuk, Potential applications of crude glycerol in polymer technology-Current state and perspectives, Renew. Sustain. Energy Rev., 66, 449-475 (2016). https://doi.org/10.1016/j.rser.2016.08.020
- M. Yus, J. Soler, J. Herguido, and M. Menendez, Glycerol steam reforming with low steam/glycerol ratio in a two-zone fluidized bed reactor, Catal. Today, 299, 317-327 (2018). https://doi.org/10.1016/j.cattod.2017.08.040
- S. Veiga, R. Faccio, D. Segobia, C. Apesteguia, and J. Bussi, Hydrogen production by crude glycerol steam reforming over Ni-La-Ti mixed oxide catalysts, Int. J. Hydrogen Energy, 42, 30525-30534 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.118
- L. Pastor-Perez and A. Sepulveda-Escribano, Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: On the effect of the Sn content, Fuel, 194, 222-228 (2017). https://doi.org/10.1016/j.fuel.2017.01.023
-
M. Voldsund, K. Jordal, and R. Anantharaman, Hydrogen production with
$CO_2$ capture, Int. J. Hydrogen Energy, 41, 4969-4992 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.009 - N. Hajjaji, A. Chahbani, Z. Khila, and M.-N. Pons, A comprehensive energy-exergy-based assessment and parametric study of a hydrogen production process using steam glycerol reforming, Energy, 64, 473-483 (2014). https://doi.org/10.1016/j.energy.2013.10.023
-
I. N. Buffoni, M. N. Gatti, G. F. Santori, F. Pompeo, and N. N. Nichio, Hydrogen from glycerol steam reforming with a platinum catalyst supported on a
$SiO_2$ -C composite, Int. J. Hydrogen Energy, 42, 12967-12977 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.047 - A.-M. Cormos and C.-C. Cormos, Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions, Int. J. Hydrogen Energy, 42, 7798-7810 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.172
- L. Ou, B. Li, Q. Dang, S. Jones, R. Brown, and M. M. Wright, Understanding uncertainties in the economic feasibility of transportation fuel production using biomass gasification and mixed alcohol synthesis, Energy Technol., 4, 441-448 (2016). https://doi.org/10.1002/ente.201500367
- G. Di Lorenzo, P. Pilidis, J. Witton, and D. Probert, Monte-Carlo simulation of investment integrity and value for power-plants with carbon-capture, Appl. Energy, 98, 467-478 (2012). https://doi.org/10.1016/j.apenergy.2012.04.010
- B. Lee, J. Heo, N.-H. Choi, C. Moon, S. Moo, and H. Lim, Economic evaluation with uncertainty analysis using a Monte-Carlo simulation method for hydrogen production from high pressure PEM water electrolysis in Korea, Int. J. Hydrogen Energy, 42, 24612-24619 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.033
-
J. Heo and H. Lim, Techno-economic analysis of glycerol steam reforming for
$H_2$ production capacity of$300m^3h^{-1}$ , Appl. Chem. Eng., 29, 209-214 (2018). - R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes, 4th ed., Pearson Press, New Jersey, USA (2013).
Cited by
- 액화 공기 에너지 저장 기술(LAES)의 경제성 분석 vol.16, pp.1, 2020, https://doi.org/10.7849/ksnre.2020.2031