• Title/Summary/Keyword: 해양지배

Search Result 272, Processing Time 0.028 seconds

Analysis of Wave Responses in Harbor Using Boundary Damper Techniques (경계 damper를 이용한 항만 파낭응답 해석)

  • 정원무;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.39-44
    • /
    • 1993
  • This paper is concerned with developing a finite element model incorporating boundary damper techniques which is applicable to the prediction of wave agitations in harbors. Based on the linear wave theory, a mild-slope equation is used. In order to consider the wave energy dissipations on solid boundary. the partial reflecting boundary condition is introduced. Radiating boundary condition is modeled by using tile second-order boundary damper developed by Bando et al. (1984). The near field region in harbor is discretized using 8-noded isoparametric elements, the boundary conditions are presented using 3-noded line elements. The numerical model is applied to a fully open rectangular harbor to prove its validity. Numerical experiments are also performed to investigate the effects of the wave reflection coefficients of solid boundary and the types of the dampers.

  • PDF

Numerical Modeling of Heat Transfer Due to Particle Impact on a Wall (벽면에서의 입자 고찰에 의한 열전달 수치 모델)

  • 권오붕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.296-305
    • /
    • 1995
  • A numerical study was undertaken to clarify the mechanisms of heat transfer in fluid-particle suspension flows. Such flows, including fluidization, are of considerable industrial importance. The present study uses 2-D numerical computations of collisions of normal incidence between a particle and a wall. By comparing the results using (a) adiabatic boundary conditions on the particle and (b) uniform, elevated temperature conditions on the particle, the contributions of fluid-mediated conduction and particle induced convection were successfully separated. Computational expedience led to the use of a transient conduction thermal layer as the background thermal field for the analysis. The results shows that the effect of particle movement is very small until the particle reaches a distance of one to one half diameter away from the wall. The gas-mediated conduction effect is dominant over the induced gas convection effect when Pe is small and the induced gas convection effect becomes significant as Pe increases.

  • PDF

A Numerical Study of Rip Current Generation Modulated with Tidal Elevations at the Daecheon Beach (큰 조차에 따라 변화하는 지형의 대천 해수욕장 이안류 발생 특성 수치모의 연구)

  • Junwoo, Choi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.247-257
    • /
    • 2022
  • In order to investigate the generations of rip currents modulated with the tidal elevations at a mega-tidal beach at the West Sea coast, numerical simulations of rip currents over the topography of the Daecheon beach were performed by using a Boussinesq-type wave and current model, FUNWAVE. The mega-tidal coast includes rocky outcrops (i.e., reefs) lying over or under the water surface according to the tidal elevations in the offshore and nearshore bathymetry. The offshore topographically-controlled rip currents were well reproduced due to the alongshore non-uniformities transformed by the tide-modulated topography. This study addressed the generation types of rip currents to occur at the mega-tidal coast with the tide-modulated outcrops and reefs.

The Legal Definition of Effective Control and Dokdo Issue: International Law as Critical Asset of National Maritime Strategy (독도(獨島)의 실효적(實效的) 지배(支配)와 해양(海洋) 전략자산(戰略資産)으로서의 국제법(國際法))

  • AHN, Han Byul
    • Strategy21
    • /
    • s.38
    • /
    • pp.13-46
    • /
    • 2015
  • Dokdo issue reaches beyond economic and security interest to Koreans, as it is regarded as symbol of her independence. Albeit the fact that Japan has merely no legitimate title over Dokdo, Japan has been tenaciously insisting their jurisdiction over Dokdo since the independence of Korea. Under such circumstances, public outrage towards Japan is most certainly understandable. Yet, mere outrage itself, lacking in logic and factual grounds, can contribute little if not any, to the desirable solution of the problem. Precedents reveal that dealing maritime issues amid lack of profound understanding in international law has often led to undesirable results, such as the inclusion of Dokdo in the Joint Management Fisheries Zone in 1999 Korea-Japan Fisheries Agreement. In a sense, adroit use of international law is a critical element in preserving Korea's sovereign rights against persistent Japanese plans to rob Dokdo once again. The Dokdo issue is inextricably bound to international law; the legal status of Dokdo as island, the equitable solution of maritime boundary delimitation and effective control, existence of dispute. Yet, the public policies and arguments made by pundits are generally in lack of understanding in international law. It is now the time for Korea to commence on long-term cross-academia / department plans to establish Dokdo strategy as part of the nationwide maritime strategy effectively using international law as its stronghold.

Marine Environments and Phytoplankton Community around Jeju Island, Korea in the Early Summer of 2016 (이른 여름 제주 해안 주변 해역의 해양 환경과 식물플랑크톤 군집의 분포 특성)

  • Yoon, Yang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.292-303
    • /
    • 2016
  • This study described the spatial distributions of marine environmental factors such as water temperature, salinity, chlorophyll a concentration and turbidity, and characteristics of phytoplankton community such as species composition, standing crops and dominant species at 19 fishing ports around Jeju Island during the early summer of 2016. I analyzed bio-oceanographical characteristics using principal component analysis (PCA) of the environmental factors and biological parameters. Water temperature, salinity, chlorophyll a and turbidity ranged from 17.6 to $20.7^{\circ}C$, from 26.19 to 32.33 psu, from 0.76 to $7.13{\mu}g\;L^{-1}$, and from 0.51 to 14.49 FTU, respectively. A total of 51 species of phytoplankton belonging to 35 genera were identified. In particular, diatoms and dinoflagellates accounted for more than 56.8% and 27.4% of all the species, respectively. Moreover, the number of phytoplankton species was controlled by salinity. Phytoplankton cell density ranged from $2.9cells\;mL^{-1}$ to $185.9cells\;mL^{-1}$. The dominant species were Navicula spp. Stephanopyxis turris, Eutreptiella gymnastica and Mesodinium rubrum. Environmental factors and the phytoplankton community varied greatly between sampling sites. According to PCA, the biological oceanographic characteristics of the around Jeju Island were characterized by meteorological factors such as air temperature, precipitation and discharge of ground water during early summer.

Effects of Korean Maritime Police Subculture on Organizational Conflict (해양경찰의 하위문화가 조직갈등에 미치는 영향)

  • Lim, You-Seok;Kim, Jong-Gil;You, Young-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.688-693
    • /
    • 2016
  • In this study, various conflicts in the maritime police organization were diagnosed and police subculture, which is different from dominant mainstream maritime police culture, was concluded to cause conflicts. In addition, maritime police conflicts and conflicts due to the balance, confrontation, and contradiction between bureaucratic and democratic values in the maritime police organization itself are discussed. The results of analysis on the effects of Maritime police subculture on organizational conflict are as follows: First, the influence of cynicism on functional conflict was explored. The higher the level of lies of the persons under investigation, the more functional conflict appeared. Also, if a person showed a low level of credibility among the police, this also led to functional conflict. In addition, if an individual showed low levels of cooperation and credibility with the police, this resulted in hierarchical conflict. Second, the influence of machismo on functional conflict was also explored. It was found that female officers experienced conflicts because of poorer job performance compared to male counterparts. In hierarchical issues, female officers experienced conflict over the reduced scope of tasks assigned to them and lower job performance ability. Third, the effect of non-acceptance of change in functional conflict was not statistically significant. An aggressive attitude toward crime control and rejecting jobs unrelated to crime influenced functional conflict, and an aggressive attitude and performing jobs unrelated to crime lead to functional conflict.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.

Numerical Modeling of Dehydration of Subducting Slab and Behavior of Expelled Water: A Preliminary Study (섭입해양판의 탈수 및 탈수된 물의 거동 수치모델링: 선행 연구)

  • Lee, Changyeol
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.198-206
    • /
    • 2018
  • In this preliminary study, dehydration of the subducting slab and behavior of the expelled water are numerically modeled using 2-dimensional model scheme. The hydrated minerals in the oceanic crust of the subducting slab experience dehydration by increases in temperature and pressure and expel their water into the overlying mantle wedge. Behavior of the expelled water is governed by both the corner flow in the mantle wedge and porous flow of the expelled water through the pores of the mantle minerals. The effects of convergence rate and age of the subducting slab as well as grain size of the minerals on the dehydration of the subducting slab and behavior of the expelled water are evaluated. The water solubility of the oceanic crust measured from the laboratory experiments is considered for modeling dehydration of the oceanic crust. The model calculations show most of the hydrated minerals in the oceanic crust is dehydrated by a depth of 100 km and the effects of the convergence rate and age of the subducting slab on the dehydration of the subducting slab and behavior of the expelled water are not significant. The larger grain size allows faster porous flow of the expelled water through the oceanic crust, mantle wedge and overlying continental crust and reduces the volume fraction of the expelled water there. The developed technique will be used for future studies on arc volcanism and has a potential implication for the other fields such as seismic tomographic study.

An Ocean Wave Simulation Method Using TMA Model (TMA 모델을 이용한 해양파 시뮬레이션 방법)

  • Lee Nam-Kyung;Baek Nakhoon;Kim Ku Jin;Ryu Kwan Woo
    • The KIPS Transactions:PartA
    • /
    • v.12A no.4 s.94
    • /
    • pp.327-332
    • /
    • 2005
  • In the field of computer graphics, we have several research results to display the ocean waves on the screen, while we still not have a complete solution yet. Though ocean waves are constructed from a variety of sources, the dominant one is the surface gravity wave, which is generated by the gravity and the wind. In this Paper, we Present a real-time surface gravity wave simulation method, derived from a precise ocean wave model in the oceanography. There are research results based on the Pierson-Moskowitz(PM) model[1], which assumes infinite depth of water and thus shows some mismatches in the case of shallow seas. In this paper, we started from the Texel, Marsen and Arsloe(TMA) model[2], which is a more precise wave model and thus can be used to display more realistic ocean waves. We derived its implementation model for the graphics applications and our prototype implementation shows about 30 frames per second on the Intel Pentium 4 1.6GHz-based personal computer. Our major contributions to the computer graphics area ill be (1) providing more user-controllable parameters to finally generate various wave shapes and (2) the improvement on the expression power of waves even in the shallow seas.

Empirical and Numerical Analyses of a Small Planing Ship Resistance using Longitudinal Center of Gravity Variations (경험식과 수치해석을 이용한 종방향 무게중심 변화에 따른 소형선박의 저항성능 변화에 관한 연구)

  • Michael;Jun-Taek Lim;Nam-Kyun Im;Kwang-Cheol Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.971-979
    • /
    • 2023
  • Small ships (<499 GT) constitute 46% of the existing ships, therefore, it can be concluded that they produce relatively high CO2 gas emissions. Operating in optimal trim conditions can reduce the resistance of the ship, which results in fewer greenhouse gases. An affordable way for trim optimization is to adjust the weight distribution to obtain an optimum longitudinal center of gravity (LCG). Therefore, in this study, the effect of LCG changes on the resistance of a small planing ship is studied using empirical and numerical analyses. The Savitsky method employing Maxsurf resistance and the STAR-CCM+ commercial computational fluid dynamics (CFD) software is used for the empirical and numerical analyses, respectively. Finally, the total resistance from the ship design process is compared to obtain the optimum LCG. To summarize, using numerical analysis, optimum LCG is achieved at the 46.2% length overall (LoA) at Froude Number 0.56, and 43.4% LoA at Froude Number 0.63, which provides a significant resistance reduction of 41.12 - 45.16% compared to the reference point at 29.2% LoA.