Browse > Article
http://dx.doi.org/10.9765/KSCOE.2022.34.6.247

A Numerical Study of Rip Current Generation Modulated with Tidal Elevations at the Daecheon Beach  

Junwoo, Choi (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.34, no.6, 2022 , pp. 247-257 More about this Journal
Abstract
In order to investigate the generations of rip currents modulated with the tidal elevations at a mega-tidal beach at the West Sea coast, numerical simulations of rip currents over the topography of the Daecheon beach were performed by using a Boussinesq-type wave and current model, FUNWAVE. The mega-tidal coast includes rocky outcrops (i.e., reefs) lying over or under the water surface according to the tidal elevations in the offshore and nearshore bathymetry. The offshore topographically-controlled rip currents were well reproduced due to the alongshore non-uniformities transformed by the tide-modulated topography. This study addressed the generation types of rip currents to occur at the mega-tidal coast with the tide-modulated outcrops and reefs.
Keywords
rip current; daecheon beach; tidal elevation; outcrops (reefs); numerical simulation; FUNWAVE;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Aagaard, T., Greenwood, B. and Nielsen, J. (1997). Mean currents and sediment transport in a rip current. Marine Geology, 140, 25-45.   DOI
2 Austin, M., Scott, T., Brown, J., Brown, J., MacMahan, J., Masselink, G., and Russell, P. (2010). Temporal observations of rip current circulation on a macro-tidal beach. Continental Shelf Research, 30, 1149-1165.   DOI
3 Bowen, AJ. (1969). Rip current: Theoretical investigations. Journal of Geophysical Research, 74, 5467-5478.   DOI
4 Bruneau, N., Castelle, B., Bonneton, P., Pedreros, R., Almar, R., Bonneton, N., Bretel, P., Parisot, J.-P., and Senechal, N. (2009). Field observations of an evolving rip current on a meso-macrotidal well-developed inner bar and rip morphology. Continental Shelf Research, 29, 1650-1662.   DOI
5 Castelle, B., Bonneton, P., Dupuis, H. and Senechal, N. (2007). Double bar beach dynamics on the high-energy meso-macrotidal French Aquitanian Coast: A review. Marine Geology, 245, 141-159.   DOI
6 Castelle, B., Scott, T., Brander, R.W. and McCarroll, R.J. (2016). Rip current types, circulation and hazard. Earth-Science Reviews, 163, 1-21.
7 Chen, Q., Dalrymple, R.A., Kirby, J.T., Kennedy, A.B. and Haller, M. (1999). Boussinesq modelling of a rip current system. Journal of Geophysical Research, 104, 20617-20637.   DOI
8 Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A.B. and Chawla, A. (2000). Boussinesq modeling of wave transformation, breaking and runup II: two horizontal dimensions. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(1), 48-56.   DOI
9 Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F. and Thornton, E.B. (2003). Boussinesq modeling of longshore current. Journal of Geophysical Research, 108(C11), 26-1-26-18.
10 Choi, J., Park, W.K., Bae, J.S. and Yoon, S.B. (2012). Numerical study on a dominant mechanism of rip current at haeundae beach: Honeycomb pattern of waves. J. of the Korean Society of Civil Engineers, 32(5B), 321-320 (in Korean).
11 Choi, J., Shin, C.H. and Yoon, S.B. (2013). Numerical study on sea state parameters affecting rip current at haeundae beach: Wave Period, Height, Direction and Tidal Elevation. Journal of Korea Water Resources Association, 46(2), 205-218 (in Korean).   DOI
12 Choi, J., Kirby, J.T. and Yoon, S.B. (2015). Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions. Coastal Engineering, 101, 17-34.   DOI
13 Choi, J. (2015). Numerical simulations of rip currents under phaseresolved directional random wave conditions. J. of Korean Society of Coastal and Ocean Engineers, 27(4), 238-245 (in Korean).   DOI
14 Choi, J. and Kim. H.-S. (2016). A boussinesq modelling of a rip current at the daecheon beach in Korea. Journal of Coastal Research, IS75, 1332-1336.
15 Dalrymple, R.A. (1978). Rip currents and their causes. 16th international Conference of Coastal Engineering, Hamburg, 1414-1427.
16 Choi, J. (2022). A numerical study on rip currents at the Haeundae coast changed after the beach nourishment. Journal of Korea Water Resources Association, 55(9), 669-678 (in Korean).
17 Clark, D.B., Elgar, S. and Raubenheimer, B. (2012). Vorticity generation by short-crested wave breaking. Geophysical Research Letters, 39, L24604, doi:10.1029/2012GL054034.   DOI
18 Dalrymple, R.A. (1975). A mechanism for rip current generation on an open coast. J. Geophys. Res., 80, 3485-3487.   DOI
19 Dalrymple, R.A., MacMahan, J.H., Reniers, A.J.H.M. and Nelko, V. (2011). Rip currents. Annual Review of Fluid Mechanics, 43, 551-581.   DOI
20 Feddersen, F. (2014). The generation of surfzone eddies in a strong alongshore current. Journal of Physical Oceanography, 44, 600-617.   DOI
21 Gensini, V.A. and Ashley, W.S. (2009). An examination of rip current fatalities in the United States. Natural Hazards, 54(1), 159-175.   DOI
22 Johnson, D. and Pattiaratchi, C. (2006). Boussinesq modelling of transient rip currents. Coastal Engineering, 53, 419-439.   DOI
23 Kennedy, A.B., Chen, Q., Kirby, J.T. and Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. Journal of Waterway, Port, Coastal and Ocean Engineering, 126, 39-47.   DOI
24 Korea Hydrographic and Oceanographic Agency (2021). Report for Operation of Rip current Warning System in 2021.
25 Long, J.W. and Ozkan-Haller, H.T. (2005). Offshore controls on nearshore rip currents. J. Geophys. Res., 110(C12). doi:10.1029/2005JC003018.   DOI
26 National Oceanic and Atmospheric (2022). Weather Related Fatality and Injury Statistics, National Weather Service, Available at: https://www.weather.gov/hazstat/ (Accessed: September 1, 2022).
27 Long, J.W. and Ozkan-Haller, H.T. (2016). Forcing and variability of nonstationary rip currents. J. Geophys. Res., 121(1), 520-539. doi:10.1002/2015JC010990.   DOI
28 Masselink, G. and Short, A.D. (1993). The effect of tide range on beach morphodynamics and morphology. Journal of Coastal Research, 9, 785-800.
29 Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T. and Rikiishi, K. (1975). Observations of the directional spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 5, 750-760.   DOI
30 Peregrine, D.H. (1998). Surf zone currents. Theoret. Comput. Fluid Dyn., 10, 295-309.   DOI
31 Peregrine, D.H. (1999). Large-scale vorticity generation by breakers in shallow and deep water. Eur. J. Mech. B, 18, 403-408.   DOI
32 Scott, T., Masselink, G., Austin, M.J. and Russell, P. (2014). Controls on macrotidal rip current circulation and hazard. Geomorphology, 214, 198-215.   DOI
33 Shin, C.H., Noh, H.K., Yoon, S.B. and Choi, J. (2014). Understanding of rip current generation mechanism at Haeundae beach of Korea: Honeycomb waves. J. Coastal Res., SI(72), 11-15.
34 Tang, E.-S. and Dalrymple, R.A. (1989). Nearshore circulation: rip currents and wave groups. Advances in Coastal and Ocean Engineering. Plenum Press, New York, 205-230.
35 Yoon, S.B., Kwon, S.J., Bae, J.S. and Choi, J. (2012). Investigation of characteristics of rip current at haeundae beach based on observation analysis and numerical experiments. J. of the Korean Society of Civil Engineers, 32(4B), 243-251 (in Korean).   DOI
36 Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves: Part 1: Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71-92.   DOI