DOI QR코드

DOI QR Code

Numerical Modeling of Dehydration of Subducting Slab and Behavior of Expelled Water: A Preliminary Study

섭입해양판의 탈수 및 탈수된 물의 거동 수치모델링: 선행 연구

  • Lee, Changyeol (Faculty of Earth Systems and Environmental Sciences, Chonnam National University)
  • 이창열 (전남대학교 지구환경과학부)
  • Received : 2018.07.16
  • Accepted : 2018.08.17
  • Published : 2018.08.31

Abstract

In this preliminary study, dehydration of the subducting slab and behavior of the expelled water are numerically modeled using 2-dimensional model scheme. The hydrated minerals in the oceanic crust of the subducting slab experience dehydration by increases in temperature and pressure and expel their water into the overlying mantle wedge. Behavior of the expelled water is governed by both the corner flow in the mantle wedge and porous flow of the expelled water through the pores of the mantle minerals. The effects of convergence rate and age of the subducting slab as well as grain size of the minerals on the dehydration of the subducting slab and behavior of the expelled water are evaluated. The water solubility of the oceanic crust measured from the laboratory experiments is considered for modeling dehydration of the oceanic crust. The model calculations show most of the hydrated minerals in the oceanic crust is dehydrated by a depth of 100 km and the effects of the convergence rate and age of the subducting slab on the dehydration of the subducting slab and behavior of the expelled water are not significant. The larger grain size allows faster porous flow of the expelled water through the oceanic crust, mantle wedge and overlying continental crust and reduces the volume fraction of the expelled water there. The developed technique will be used for future studies on arc volcanism and has a potential implication for the other fields such as seismic tomographic study.

본 선행 연구에서는 섭입해양판의 탈수와 탈수된 물의 거동을 2차원 컴퓨터 수치모델링 하였다. 함수 광물을 포함한 섭입해양판이 맨틀로 침강되면 온도와 압력이 증가함에 따라 함수 광물의 탈수가 발생, 상부에 위치한 맨틀 쐐기에 물을 공급한다. 탈수된 물의 거동은 맨틀 쐐기의 구석 유동과 맨틀 쐐기 내 광물의 공극을 따라 흐르는 공극 유동에 의해 동시에 지배 받는다. 섭입해양판의 속도와 연령 그리고 광물 입자의 크기가 탈수된 물의 거동에 미치는 영향을 분석하였다. 함수 광물이 포함된 해양 지각의 물의 용해도는 실험실에서 측정된 값을 근사 하여 사용하였다. 실험 결과는 대부분의 함수 광물이 100 km 보다 얕은 깊이에서 탈수되며, 섭입해양판의 속도 및 연령은 탈수 및 탈수된 물의 거동에 크게 영향을 미치지 않음을 보였다. 광물 입자의 크기가 클수록 탈수된 물이 빠르게 맨틀 쐐기와 상부 대륙 지각을 거쳐 지표면으로 유출되므로 해양 지각, 맨틀 쐐기 그리고 상부 대륙 지각 내 물의 체적율이 광물 입자의 크기가 작은 다른 실험에 비하여 감소한다. 개발된 수치모델링 기법은 추가 개발을 통해 향후 호화산 연구에 활용될 예정이며 지진파 단층도 등 타 분야 연구에도 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Carlson, R. L., and Miller, D. J., 2003, Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites, Geophys. Res. Lett., 30(5), 1250.
  2. Grove, T. L., Chatterjee, N., Parman, S. W., and Medard, E., 2006, The influence of $H_2O$ on mantle wedge melting, Earth Planet. Sci. Lett., 249(1-2), 74-89. https://doi.org/10.1016/j.epsl.2006.06.043
  3. Hyndman, R. D., and Peacock, S. M., 2003, Serpentinization of the forearc mantle, Earth Planet. Sci. Lett., 212(3-4), 417-432. https://doi.org/10.1016/S0012-821X(03)00263-2
  4. Iwamori, H., 1998, Transportation of $H_2O$ and melting in subduction zones, Earth Planet. Sci. Lett., 160(1-2), 65-80. https://doi.org/10.1016/S0012-821X(98)00080-6
  5. Jagoutz, O., and Kelemen, P. B., 2015, Role of Arc Processes in the Formation of Continental Crust, Annu. Rev. Earth Planet. Sci., 43, 363-404. https://doi.org/10.1146/annurev-earth-040809-152345
  6. Karato, S.-I., and Wu, P., 1993, Rheology of the upper mantle: a synthesis, Science, 260, 771-778. https://doi.org/10.1126/science.260.5109.771
  7. Kim, S. W., Kwon, S., Park, S.-I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, K., and Kim, S. J., 2016, SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula, Lithos, 262, 88-106. https://doi.org/10.1016/j.lithos.2016.06.027
  8. Kim, S. W., Kwon, S., Ryu, I.-C., Jeong, Y.-J., Choi, S.-J., Kee, W.-S., Yi, K., Lee, Y. S., Kim, B. C., and Park, D. W., 2012, Characteristics of the Early Cretaceous Igneous Activity in the Korean Peninsula and Tectonic Implications, J. Geol., 120(6), 625-646. https://doi.org/10.1086/667811
  9. Lee, C., and King, S. D., 2009, Effect of mantle compressibility on the thermal and flow structures of the subduction zones, Geochem. Geophys. Geosyst., 10(1), Q01006.
  10. Nagaya, T., Walker, A. M., Wookey, J., Wallis, S. R., Ishii, K., and Kendall, J. M., 2016, Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone, Sci. Rep., 6, 29981. https://doi.org/10.1038/srep29981
  11. Peacock, S. M., and Hyndman, R. D., 1999, Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes, Geophys. Res. Lett., 26(16), 2517-2520. https://doi.org/10.1029/1999GL900558
  12. Reynard, B., Hilairet, N., Balan, E., and Lazzeri, M., 2007, Elasticity of serpentines and extensive serpentinization in subduction zones, Geophys. Res. Lett., 34(13), L13307. https://doi.org/10.1029/2007GL030176
  13. Sakuyama, T., Nagaoka, S., Miyazaki, T., Chang, Q., Takahashi, T., Hirahara, Y., Senda, R., Itaya, T., Kimura, J. I., and Ozawa, K., 2014, Melting of the Uppermost Metasomatized Asthenosphere Triggered by Fluid Fluxing from Ancient Subducted Sediment: Constraints from the Quaternary Basalt Lavas at Chugaryeong Volcano, Korea, J. of Petrol., 55(3), 499-528. https://doi.org/10.1093/petrology/egt074
  14. Schubert, G., Turcotte, D., and Olson, P., 2001, Mantle Convection in the Earth and Planets, Cambridge Univ. Press, Cambridge, 1st Ed.
  15. Spiegelman, M., Kelemen, P. B., and Aharonov, E., 2001, Causes and consequences of flow organization during melt transport: The reaction infiltration instability in compactible media, J. Geophys. Res., 106(B2), 2061-2077. https://doi.org/10.1029/2000JB900240
  16. Syracuse, E. M., and Abers, G. A., 2006, Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem. Geophys. Geosyst., 7(5), Q05017.
  17. Wada, I., and Behn, M. D., 2015, Focusing of upward fluid migration beneath volcanic arcs: Effect of mineral grain size variation in the mantle wedge, Geochem. Geophys. Geosyst., 16(11), 3905-3923. https://doi.org/10.1002/2015GC005950
  18. Wada, I., Wang, K., He, J., and Hyndman, R. D., 2008, Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization, J. Geophys. Res., 113(B4), B04402.
  19. Wilson, C. R., Spiegelman, M., van Keken, P. E., and Hacker, B. R., 2014, Fluid flow in subduction zones: The role of solid rheology and compaction pressure, Earth Planet. Sci. Lett., 401, 261-274. https://doi.org/10.1016/j.epsl.2014.05.052