• Title/Summary/Keyword: 해안절벽

Search Result 20, Processing Time 0.025 seconds

Geomorphology and Geology of Gatbawi, Mokpo, Korea (목포 갓바위의 지형 및 지질 특성과 활용)

  • Kim, Hai-Gyoung;Moon, Byoung-Chan;Koh, Yeong-Koo;Youn, Seok-Tai;Oh, Kang-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.99-108
    • /
    • 2012
  • To consider geomorphological and geological characteristics to Gatbawi(the 500th natural monument), it was investigated with the aspect of scale, form, mineralogy, chemistry and weathered state. Showing typically erosional features, micro-terrains as sea cliffs, sea notches, marine plateaus and tafoni developed well on coastal areas near the monument. Sea cliffs are vertical and form sea notches in their bases. Coastal terraces are 3.5m in width and 20m in trace. Tafoni are honey combed. The monument is mainly composed of quartz, plagioclase, microcline, biotite, sericite in mineral and corresponded to crystalline tuff dominated in quartz and plagioclase. It has 23.60~28.27 wt.% of $Al_2O_3$, 3.27~5.80 wt.% of $Na_2O$, and 0.11~0.20 wt.% of Cl in chemical contents, leveling higher than those of earth crust standards. It is considerably weathered on the basis of CAI(77.42~83.93%). The monument is very useful for natural perspective tourism and education. Therefore, it is necessary that several ideas as guide plates, observing telescope, explaining guider, education programs connected with related services, touring goods, picture for books on utilization on the monument must establish.

Distribution Types of the Relict Conifer Community and the Approach for the Ecological Management in Ulleung-Island (울릉도에 자생하는 침엽수류 유존군락의 분포유형과 생태적 관리방안에 대한 연구)

  • Cho, Hyun-Je;Lee, Jung-Hyo;Choo, Yeon-Sik;Hong, Sung-Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.95-104
    • /
    • 2011
  • Distribution types of native conifers (Juniperus chinensis, Pinus parviflora, Tusga sieboldii and Taxus cuspidata var. latifolia) were studied by phytosociological investigation and ZM method in Ulleung Island, South Korea. Two main types were divided maritime vegetation (Juniperus chinensis forest) and mountain vegetation (Taxus cuspidata var. latifolia forest and Pinus parviflora-Tusga sieboldii forest). The former was divided into sea cliff distribution (J-SC) and sea ridge distribution (J-SR) type. The latter was classified 7 distribution types; Taxus cuspidata var. latifolia forest was rock distribution (Ta-R) and mountain slope distribution (Ta-MS) type, and Pinus parviflora-Tusga sieboldii forest was rock distribution (P T-R), upper and ridge distribution (P T-UR, 3 units sub-types:1sub, 2sub, 3sub), and Mountain slope distribution (P T-MS) type. It was considered that J-SC, Ta- R, and P T-R were maintained by topographic climax, but J-SR, Ta-MS, P T-UR and P T-MS were the process of vegetation succession. Distribution types of topographic climax are entrusted to process of vegetation succession. Types in the process of vegetation succession will be needed tending of forest to promote saplings growth and seedlings germination. Especially in order to restore Tsuga sieboldii forest should be afforest and make forest gap because It is mid shade tolerant tree and purity percentage of its seed is 1~2%. It was considered that the composition of group mixture forest constituted Pinus parviflora, Tsuga sieboldii, Taxus cuspidata, Camellia japonica, Machilus thunbergii and Acer okamotoanum, etc. will be able to restore native vegetation, after take the form of forest gap by strong thinning and pruning of Pinus thunbergii forest.

The Innovative Strategy on the Activation of Marine Tourism in Busan (부산의 해상관광활성화에 관한 혁신적 전략(1))

  • Kim, Jae-Gwan
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.2
    • /
    • pp.156-170
    • /
    • 2007
  • The commerce and industry of Busan was developed because of good geographical conditions with harbor. After passing its settling-down and diffusing time, Busan has grown in the trade city. Busan has lost the competitive power of the port city since 2000, because of the weakness of its economic power which is caused by the secession of manufacturing industry and the decrease of resident population and foreign tourist. In order to overcome these weaknesses, it is necessary for Busan to take the innovative strategy for the activation of marine tourism. This goal can be achieved by the strong quality of the port city, the coastal terrain, the traditional industry and the international traffic. The aim of this paper is to explore the Innovative Strategy for the activation of marine tourism in Busan and to suggest the following proposal. First, the government must decide the base of marine tourism under the geography viewpoint of the coast and sea, and develope tourism resources after analyzing the identity of marine tourism base. Second, the core part along the selected bases of marine tourism must be constructed the tourism terminal as the landmark of Busan in order to concentrate foreign tourist. Third, after each base of marine tourism must become the resort for tourists, they are able to experience the activity of marine tourism in this resort. Therefore, each base must be specialized. Fourth, each base must be connected with the route of marine tourism Fifth, in order to overcome the off-season of marine tourism, winter tourism goods such as skates, skis, artificial sea-bathing pool, artificial swimming beach, artificial sled, artificial rock wall of coast, hot spring resort of salt water are required to be developed in the center of marine tourism base.

  • PDF

Geo-educational Values of the Jebudo Geosite in the Hwaseong Geopark, Korea (화성 지질공원 제부도 지질명소의 지질교육적 가치)

  • Ha, Sujin;Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Shin, Seungwon;Lim, Hyoun Soo;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2021
  • Recently, ten geosites have been considered in Hwaseong for endorsement as national geoparks, including the Jebudo, Gojeongri Dinosaur Egg Fossils, and Ueumdo geosites. The Jebudo geosite in the southern part of the Seoul metropolitan area has great potential for development as a new geoscience educational site because it has geological, geographical (landscape), and ecological significance. In this study, we described the geological characteristics through field surveys in the Jebudo geosite. We evaluated its potential as a geo-education site based on comparative analysis with other geosites in Hwaseong Geopark. In addition, we reviewed the practical effect of field education at geosites on the essential concepts and critical competence-oriented education emphasized in the current 2015 revised science curriculum. The Jebudo Geosite is geologically diverse, with various metamorphic rocks belonging to the Precambrian Seosan Group, such as quartzite, schist, and phyllite. Various geological structures, such as clastic dikes, faults, joints, foliation, and schistosity have also been recorded. Moreover, coastal geological features have been observed, including depositional landforms (gravel and sand beaches, dunes, and mudflats), sedimentary structures (ripples), erosional landforms (sea cliffs, sea caves, and sea stacks), and sea parting. The Jebudo geosite has considerable value as a new geo-education site with geological and geomorphological distinction from the Gojeongri Dinosaur Egg Fossils and Ueumdo geosites. The Jebudo geosite also has opportunities for geo-education and geo-tourism, such as mudflat experiences and infrastructures, such as coastal trails and viewing points. This geosite can help develop diverse geo-education programs that improve key competencies in the science curriculum, such as critical thinking, inquiry, and problem-solving. Furthermore, by conducting optimized geo-education focused on the characteristics of each geosite, the following can be established: (1) the expansion of learning space from school to geopark, (2) the improvement of understanding of specific content elements and linkage between essential concepts, and (3) the extension of the education scope throughout the earth system. There will be positive impacts on communication, participation, and lifelong learning skills through geopark education.

Natural Heritage Values and Diversity of Geoheritages on Udo Island, Jeju Province (제주도 우도 지역 내 지질유산의 다양성과 가치)

  • Woo, Kyung Sik;Yoon, Seok Hoon;Sohn, Young Kwan;Kim, Ryeon;Lee, Kwang Choon;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.290-317
    • /
    • 2013
  • The objectives of this study are to investigate the natural heritage and scientific value of various geosites on Udo Island, and to evaluate the sites as natural monuments and as world natural heritage properties. Udo Island includes a variety of geoheritage sites. Various land forms formed during the formation of the Someori Oreum formed by phreatomagmatic eruptions. The essential elements for the formation of Udo Island are the tuff cone, overflowing lava and overlying redeposited tuff sediments. Various coastal land forms are also present. About 6,000 years B.C., when sea-level rose close to its present level due to deglaciation since the Last Glacial Maximum, carbonate sediments have been formed and deposited in shallow marine environment surrounding Udo Island. In particular, the very shallow broad shelf between Udo Island and Jeju Island, less than 20 m in water depth, has provided perfect conditions for the formation of rhodoids. Significant amounts of rhodoids are now forming in this area. Occasional transport of these rhodoids by typhoons has produced unique beach deposits which are entirely composed of rhodoids. Additional features are the Hagosudong Beach with its white carbonate sands, the Geommeole Beach with its black tuffaceous sands and Tolkani Beach with its basalt cobbles and boulders. Near Hagosudong Beach, wind-blown sands in the past produced carbonate sand dunes. On the northern part of the island, special carbonate sediments are present, due to their formation by composite processes such as beach-forming process and transportation by typhoons. The development of several sea caves is another feature of Udo Island, formed by waves and typhoon erosion within tuffaceous sedimentary rocks. In particular, one sea cave found at a depth of 10 m is very special because it indicates past sea-level fluctuations. Shell mounds in Udo Island may well represent the mixed heritage feature on this island. The most valuable geoheritage sites investigated around Udo Isalnd are rhodoid depostis on beaches and in shallow seas, and Someori Oreum composed of volcanoclastic deposits and basalt lava. Beach and shallow marine sediments, composed only of rhodoids, appear to be very rare in the world. Also, the natural heritage value of the Someori Oreum is outstanding, together with other phreatomagmatic tuff cones such as Suwolbong, Songaksan and Yongmeori. Consequently, the rhodoid deposits and the Someori Oreum are worth being nominated for UNESCO World Natural Heritage status. The designation of Someori Oreum as a Natural Monument should be a prerequisite for this procedure.

Development and Application of Teaching Materials for Geological Fieldwork in the Area of Bongwhabong, Buan-gun, Jeonbuk, Korea (전북 부안군 봉화봉 일대의 야외지질 학습자료 개발 및 적용)

  • Park, Jae-Moon;Ryang, Woo-Hun;Cho, Kyu-Seong;Kim, Seung-Bum
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.883-896
    • /
    • 2009
  • This study is to develop teaching materials for geological fieldwork around Bonghwabong area in the national park of the Byeonsan Peninsula, Buangun, Jeonbuk. The developed materials are applied in the geological fieldwork of science high school students to maximize the effects of use. The sedimentary succession of the Bonghwabong area in the Cretaceous age, Mesozoic, represents large-scale and distinctive sedimentary structures on the sea cliffs, which are utilized as teaching materials for earth science fieldwork. The area of Bonghwabong also comprises various geological structures related to advanced learning programs as well as those within the curriculum of high school earth science. A five-step fieldwork model was applied to 15 students in clubs related to earth science in a science high school. This study used a qualitative methodology to analyze students' responses that were gathered about the process of fieldwork. During the activity, a qualitative analysis was carried out by using discussions and interviews both with the students and the teacher. Results indicated that the fieldwork activity using teaching materials was effective in helping the students improve their self-directed learning and practical understanding of earth science.

Development and Application of Teaching Materials for Geological Fieldwork in Jeokbyeokgang Area, Gyeokpo, Byeonsan, Korea (변산반도 격포 적벽강 일대 야외지질 학습자료 개발 및 적용)

  • Cho, Kyu-Seong;Ryang, Woo-Hun;Shin, Sun-Seon;Oh, Jae-Myeong;Chung, Duk-Ho
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.658-671
    • /
    • 2012
  • This study is to develop teaching materials for the geological fieldwork of Jeokbyeokgang area located in the national park of the Byeonsan-bando National Park, Buangun, Jeonbuk, Korea. The developed teaching materials are used in middle school science to effectively teach the fieldwork of the area. The sedimentary succession of Jeokbyeokgang area in the Cretaceous age, Mesozoic, represents the large-scale and distinctive sedimentary structures on sea cliffs, which are worth developing as teaching materials for the earth science fieldwork. The area of Jeokbyeokgang also comprises various geological structures related to the advanced learning programs as well as those within the curriculum of earth science in middle school level. A five-step fieldwork model was applied to 20 students in middle school earth science. This study quantitatively analyzed students' responses to the process of the fieldwork activity. Results indicated that the fieldwork activity using the developed teaching materials was effective in helping the students to improve their self-directed learning and practical understanding of earth science.

Petrological Characteristics and Origin of Volcaniclasts within the Massive Tuff Breccia Formation from Dokdo Island, Korea (독도 괴상 응회질 각력암층에서 나타나는 화산암편의 암석학적 특성과 기원)

  • Shim, Sung-Ho;Im, Ji-Hyeon;Jang, Yun-Deuk;Choo, Chang-Oh;Park, Byeong-Jun;Kim, Jung-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • Dokdo Island, Korea, is located in the East Sea belonging to back arc basin. In this study we examined petrology and geochemistry of massive tuffaceous breccia (MTB) from Dongdo (Eastern islet) and Seodo(Western islet), the two largest islands of Dokdo. Field studies and chemical analysis distinguish the MTB in Dongdo and Seodo. The Dongdo MTB (DMTB) is exposed up to 50 m on the ocean cliff and it has dominant basalt and trachybasalt with moderate amount of trachyte and scoria. On the other hand, Seodo MTB (SMTB), which is preserved between trachyte dike and trachyandesite, is composed of roughly equal amounts of basalt, trachybasalt and trachyte. The location of the islets were related to the source vent having in contact with underlying trachyte lava and differential pyroclastic deposits made them different characteristics. According to trace element analysis of trachytic volcanic clasts, the Ba concentration ranges from 66 to 103 ppm and Sr varies from 44 to 56 ppm in DMTB. However, Br and Sr in SMTB correspondingly showed relatively wide ranges: Br 785-1259 ppm and Sr 466-1230 ppm. These differential trends between DMTB and SMTB, along with the difference in P and Ti, indicate that the crystallization of alkali feldspar, feldspathoid, biotite, apatite and titanium took place differently. Nevertheless, DMTB and SMTB are similar in REE patterns and they are correspondingly characterized by high LREE, low HREE and similar $(La/Yb)_N$ values with 23.9-40.2 in DMTB and 27.4-32.9 in SMTB. These patterns suggest that Dongdo and Seodo might be originated from coeval magma suites. Dokdo island shows high concentrations of Ba, K and Rb. These signatures mark a result attributed to the mantle upwelling because the magma derived from the asthenosphere was metasomatized with subduction-related fluids.

Comparative Analysis of Bathymetry in the Dongdo and the Seodo, Dokdo using Multibeam Echosounder System (다중빔 음향 측심기를 이용한 독도 동도와 서도 남부 연안 해저지형 비교 분석)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • In this study, we analyze precise seabed geomorphology and conditions for comparing the nearshore areas of the Dongdo(East Island) and the Seodo(West Island) using detailed bathymetry data and seafloor backscattering images, in Dokdo, the East Sea. We have been obtained the detailed bathymetry data and the seafloor backscattering data. The survey range is about $250m{\times}250m$ including land of islets to the nearshore areas of the southern part of the Dongdo and the Seodo. As a result of bathymetry survey, the southern area of the Dongdo(~50 m) is deeper than the Seodo(~30 m) in the water depth. The survey areas are consist of extended bedrocks from land of the Dongdo and the Seodo. The underwater rock region of the Seodo is larger than the Dongdo. In spite of similar extended rocks features from islets, there are some distinctive seabed characteristics between the southern nearshore areas of the Dongdo and the Seodo. The Talus-shaped seafloor environment formed by gravel and underwater rocks originating from the land of the Dongdo is up to about 15 m depth. And the boundary line of between extended bedrocks and seabottom is unclear in the southern nearshore of the Dongdo. On the other hand, the southern coast of the Seodo is characterized by relatively large scale underwater rocks and evenly distributed sediments, which clearly distinguish the boundary of between extended bedrocks and seafloor. This is because the tuff layers exposed to the coastal cliffs of the Dongdo are weak against weathering and erosion. It is considered that there are more influences of the clastic sediments carried from the land of the Dongdo compared with the Seodo. Particularly, the land of the Dongdo has been undergoing construction activities. And also a highly unstable ground such as faults, joints and cracks appears in the Dongdo. In previous study, there are dissimilar features of the massive tuff breccia formations of the Dongdo and the Seodo. These conditions are thought to have influenced the different seabed characteristics in the southern nearshore areas of the Dongdo and the Seodo.

Vegetation of Jangdo Island (장도의 식생)

  • Choi, Byoung-Ki;Kim, Jong-Won;Kim, Seong-Yeol;Lim, Jeong-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.512-527
    • /
    • 2012
  • Jangdo Island (area $1.54km^2$) located in the western end of Dadohae Haesang National Park has been recognized as an prominent ecoregion possessing high moor and national biodiversity hotspot. In terms of the Z$\ddot{u}$rich-Montpellier School's phytosociology, we investigate the diversity of plant communities on the island and reevaluate the Jangdo wetland designated as Ramsar site. Ten physiognomic types of the Jangdo's vegetation were classified into 22 syntaxa (3 associations, 15 communities and 4 subcommunities). Jangdo wetland was actually denominated as 'eutrophic wetland' by Pharagmitetea and Orizetea rather than 'high moor'. Nevertheless, existence value of the Jangdo wetland is evaluated very high as a stepping stone for migratory birds and even plant dispersions. A new site of the northernmost distribution of Arachniodo-Castanopsietum sieboldii, which is a kind of cold-resistant phytocoenosis among the Camellietea japonicae of the warm-temperate broad-leaved forests, was described. Hosta yingeri-Carpinus turczaninovii var. coreana community and Carex wahuensis var. robusta-Juniperus chinensis var. procumbens community were described specifically as an endemic and an edaphic vegetation type, respectively. The unique Jangdo's vegetation reflects regional environmental conditions such as much higher frequency of frost-free days and the highest number of annual average foggy days in Korea and a well-developed aquifer in the depressed basin formed by differential erosion. We identified that human interventions (pasture, logging, forest fire, cultivation, etc.) has been involved intensively on every vegetation types, even though a rugged and inaccessible topography of the island. Particularly the Jangdo wetland has been recently threatened by fundamental distortion on hydrological system. We request an immediate establishment of the conservation prescription manual.