• Title/Summary/Keyword: 항진균

Search Result 388, Processing Time 0.025 seconds

Production and Chracteristics oil Antifungal agents from Bacteria (세균으로부터 항진균성 물질의 생산 및 특성)

  • 김현수;육영민;여수환
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.490-494
    • /
    • 2003
  • For the production of antifungal compound, strain B-1 was used as a strong producing strain among bacteria isolated from various soil samples. The optimum medium for the production of antifungal compound was PDB (potato starch 0.4%, dextrose 2%, pH5.1). The optimum conditions for the production of antifungal compound didn't affect on the carbon and nitrogen sources. The produced compound showed broad antimicrobial activity to the tested strains such as five fungi and four bacteria. The optimum pH and temperature of the production antifungal compound were pH 5.0 and 28$^{\circ}C$, respectively. Ether extrct (1$\mu\textrm{g}$/${\mu}\ell$) of culture broth was confirmed inhibitory zone by the thin layer chromatography and plate assay. The antimicrobial compound was unstabled after heat (121$^{\circ}C$) trsatment. Strain B-1 was mass cultured in a 5-liter tormentor, containing 3 liters of PDB medium at 28$^{\circ}C$, pH 5.0, 120 (pm with aeration (1L/min).

Isolation and Antifungar Activity of Bacillus ehimensis YJ-37 as Antagonistic against Vegetables Damping-off Fungi (채소류 모잘록병균에 길항하는 Bacillus ehimensis YJ-37의 선발과 항진균성)

  • 주길재;김진호;강상재
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.200-207
    • /
    • 2002
  • This study was carried out to isolate of antagonistic bacterium against Pythium ultimum and Rhizoctonia solani AG-4, causal pathogens of vegetables damping-off. Total of 600 strains were isolated from soil and plait roots. The isolates were screened for antagonism against Pythium ultimum and Rhizoctonia solani AG-4. One strain, named YJ-37, was sellected for detained study among those microoganisms screened. It was identified as Bacillus ehimensis based on morphological and physiological characterisitics according to the Bergey's mannual of systematic bacteriology, Sherlock system of Microbial ID Inc. and 16S rDNA sequences methods. Furthermore Bacillus ehimensis YJ-37 showed antifungal activities against Alternaria altrata, Collectotrichum gloeosporioides, Didymella bryoniae, Fusarium moniliforme, Fusarium oxysporum, F. oxysporum cucumerinum, F. oxysporum niveum, Gloeosporium sp., Glomerella sp., G. cingulata, G. lagenaria, Penicillium digitatum, P. italicum, Phytophthora capsici, Sclerotinia sclerotiorum, and Stemprhylium solani.

Preventive effects of shiitake mushroom extract on candida stomatitis (칸디다성 구내염에 대한 표고버섯 추출물의 예방효과)

  • Yoo, Hyun-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.3
    • /
    • pp.123-129
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate antifungal activity of shiitake mushroom yeast and hyphal type of Candida albicans. Materials and Methods: The extract from shiitake mushroom was collected by drying the supernatant after soaking shiitake mushrooms in water or ethanol. The antifungal activity of the extracts against yeast type of C. albicans was investigated by the susceptibility assay using microplate. C. albicans biofilm was formed on 12-well plate using Ham's F-12 medium in CO2 incubator and treated with the ethanol extract. Furthermore, C. albicans biofilm was formed on denture base resin disk and treated with or without the ethanol extract in the presence of denture cleanser. Live C. albicans in biofilm was counted by cultured colony forming unit value after inoculated on agar plate. Results: Ethanol extract from shiitake mushroom showed stronger antifungal activity against yeast type of C. albicans compared to its water extract. The ethanol extract significantly reduced count of C. albicans in hyphal biofilm (P < 0.05). Also, the ethanol extract showed synergistically antifungal effect with denture cleanser on candidal biofilm on denture base resin disk (P < 0.05). Conclusion: The ethanol extract of shiitake mushroom may be a candidate for preventing candidal stomatitis as well as denture-related stomatitis.

Characterization and Antifungal Activity against Candida albicans of Vaginal Lactobacillus spp. Isolated from Korean Women (질 내 유산균의 Candida albicans에 대한 항진균 효과 연구)

  • Jung, Yeojung;Kang, Chang-Ho;Shin, YuJin;So, Jae-Seong
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.146-152
    • /
    • 2017
  • Vulvovaginal candidiasis (VVC) is one of the urogenital infections occurring in women worldwide. Candida albicans is generally observed among various types of microorganisms causing VVC. Antibiotic therapy is typical, and the use of Lactobacilli probiotics is to be recognized as a promising alternative. The aim of this study was to select vaginal lactobacilli with probiotic properties against C. albicans. In a previous study, we isolated 38 lactobacilli from vagina of Korean women and 20 isolates were shown to inhibit C. albicans. We further selected 10 isolates which were able to inhibit C. albicans less than $10^5CFU/mL$. Among these selected strains, Lactobacillus salivarius MG242 (identified by 16s rRNA sequencing) was finally selected based on its strong anti-candidal activity, acid/bile salt resistance and adhesion property. Indirect adhesion activity of MG242 measured by auto-aggregation assay showed more than 60% auto-aggregation after 5 h standing. Taken these results together, the selected strain MG242 may have potential for application in vagina health related products.

Biocontrol of Anthracnose of Chili Pepper by Bacillus sp. NAAS-1 (Bacillus sp. NAAS-1을 이용한 고추 탄저병 생물학적 방제)

  • Yoo, Jae Hong;Park, In Cheol;Kim, Wan Gyu
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.277-281
    • /
    • 2012
  • Bacillus sp. NAAS-1 isolated from the field of Chili pepper was tested for biocontrol activity against anthracnose pathogen of Chili pepper caused by Colletotrichum acutatum. The antifungal activity of Bacillus sp. NAAS-1 culture broth was compared with synthetic fungicide containing carbendazim (40%) and kasugamycin (3.45%). Bacillus sp. NAAS-1 showed a similar fungicidal activity against the anthracnose pathogen at the concentration of 50 ${\mu}L/mL$ in comparison to the fungicide containing carbendazim (40%) and kasugamycin (3.45%) using a cup method. Bacillus sp. NAAS-1 also exhibited its potent fungicidal activity against the anthracnose in vivo test at the concentration of 50 ${\mu}L/mL$ when compared to the fungicide containing carbendazim (40%) and kasugamycin (3.45%).

The Screening of Antifungal and Antibacterial Activities of Extracts from Mushrooms in Korea (II) (한국산 버섯추출물의 항진균 및 항세균활성 검색(II))

  • Min, Tae-Jin;Kim, Eun-Mi;You, Sun-Hoo
    • The Korean Journal of Mycology
    • /
    • v.24 no.1 s.76
    • /
    • pp.25-37
    • /
    • 1996
  • Antifungal and antibacterial activities of 108 extracts from 36 species of mushrooms in Korea were screened. The powder of fruiting body of each mushroom was extracted with petroleum ether, 80% ethanol and distilled water subsequently. Among these, five extracts including the ethanol extract of Agaricus subrutilescens, seven extracts including the water extract of Amanita virosa, nine extracts including the water extract of Amanita pantherina and twenty five extracts including the water extract of Lycoperdon perlatum showed antibiotic activities against yeasts, fungi, Gram-negative bacteria and Gram-positive bacteria, respectively.

  • PDF

Characterization of an Antifungal Substance Isolated from Aerial Parts of Vitis vinifero L. (포도나무 (Vitis vinifero L.) 지상부로부터 분리한 항진균성 활성물질의 특성규명)

  • Lim, Tae-Heon;Youl, Kwon-Soon;Choi, Yong-Hwa
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.82-86
    • /
    • 2007
  • Methanol extract obtained from aerial parts of Vitis vinifero L. was successively fractionated with n-hexane, ethylacetate, n-butanol, and water. From ethylacetate fraction, an active compound was isolated through silica gel column chromatography and recrystallization, and was identified as Lup-20(29)-ene-3,28-diol on the basis of EI-MS data. The compound, at 100 mg $mL^{-1}$, inhibited the mycelial growth of Phytophthora capsici and Colletotrichum acutatum by 52.1 % and 40.8%, respectively.

Antifungal Activity of Chitosans on Candida albicans and Trichophyton rubrum and its Induction of Apoptosis (키토산의 Candida albicans와 Trichophyton rubrum에 대한 항진균 작용과 Apoptosis 유도작용)

  • Chee, Hee-Youn
    • The Korean Journal of Mycology
    • /
    • v.34 no.2
    • /
    • pp.119-121
    • /
    • 2006
  • The antifungal activity of chitosan ($M.W.\;400,000{\sim}500,000$) and chitooligosaccharide ($M.W.\;3,500{\sim}5,000$) was investigated against Candida albicans and Trichophyton rubrum. Chitosan showed antifungal activity against C. albicans and T. rubrum at 50 and 100 ng/ml, respectively while chitooligosaccharide did not suppress the growth of fungus. The mode of antifungal activity of chitosan was found to be fungicidal activity. In order to investigate the induction of apoptosis by chitosan, exposure of phosphatidylserine on the surface of the cytoplasmic membrane was observed by the FITC-annexin V reaction. The results showed that chitosan induced apoptosis on C. albicans.

Complete genome sequence of Bacillus subtilis BS16045 isolated from Gochujang (고추장에서 분리된 Bacillus subtilis BS16045의 유전체 서열 분석)

  • Jeon, SaeBom;Heo, Jun;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.55-57
    • /
    • 2017
  • Bacillus subtilis BS16045 was isolated from Gochujang, a Korean red chili paste, in order to get a starter strain that can be used for preservation of the fermented foods. We report the whole genome sequence of B. subtilis BS16045, which contains 4,165,121 bp with a G+C content of 43.6%. We also confirmed the set of antibiotic genes producing surfactin, kanosamine, bacillaene, plipastatin, subtilosin A, and bacilysin, which are related to antifungal and antibacterial activities. These results indicate that B. subtilis BS16045 could be a potential starter strain for solving contamination by food-borne pathogens in the soybean products factory.