• Title/Summary/Keyword: 항진균활성

Search Result 261, Processing Time 0.046 seconds

Bioactivity of the Extract of Coptis chinensis: In-vitro Antifungal Activity against Phytophthora capsici and Growth-promotion Effect in Red-pepper (황련 추출물의 고추역병에 대한 In-vitro 항진균 활성 및 고추 생육촉진 효과)

  • Ahn, Seon-Mi;Lee, Dong-Sin;Kim, Mi-Sun;Choi, Su-Ji;Choi, Chung-Sik;Lee, Jung-Bok;Jang, Han-Su;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.280-286
    • /
    • 2009
  • To investigate anti-phytopathogenic fungal activity of Coptis chinensis, the methanol extract and its organic solvent fractions were prepared. Using the extract and the fractions, in-vitro spore-germination inhibition and mycelial-growth inhibition activities were evaluated against Colletotrichum gloeosporioides, Phytohpthora capsici, Pyricularia grisea, Rhizoctonia solani, Botryosphaeri dothidea, Glomerella cingulata, respectively. Treatment of the methanol extract (500 mg/mL) into the spore of phytopathogenic fungi completely inhibited germinations for 5 days, except B. dothidea, and showed strong antifungal activities against P. grisea and B. cinerea, and antioomycetes activity against P. capsici. The minimal growth inhibition concentrations of the methanol extract against P. grisea, B. cinerea and P. capsici were 300, 300, and 500 mg/mL, respectively. For practical application of C. chinensis in red-pepper field, the hot-water extract (1,000 mg/mL) was prepared in commercial facility, after evaluation of heat stability and solvent-extraction yields of antifungal substances. The 3-times leaf-spray of the extract from June to August, 2008 did not show any deleterious effect to red-pepper. In fact, the leaf-spray promoted plant growth including leaf, root and fruit. The average weight and rind of each fruit were increased to 119% and 117% comparison to those of without treatments. Our results suggest that C. chinensis is a useful source for control of red-pepper diseases and plant growth.

Suppression of Powdery Mildew Using the Water Extract of Xylogone ganodermophthora and Aqueous Potassium Phosphonate Solution on Watermelon under Greenhouse Conditions (Xylogone ganodermophthora 배양체 추출물 및 아인산칼륨 수용액을 이용한 시설수박 흰가루병 발생 억제효과)

  • Kang, Hyo-Jung;Kim, Youngsang;Kim, Taeil;Jeong, Taek Ku;Han, Chong U;Nam, Sang Young;Kim, Ik-Jei
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.309-314
    • /
    • 2015
  • Xylogone ganodermophthora (Xg) is an ascomycetous fungus that causes yellow rot on cultivated Ganoderma lucidum. Previously, we reported in vitro antifungal activities of a Xg culture extract against several watermelon pathogens. In 2014, we conducted greenhouse experiments to evaluate the control efficacy of a water extract of cultured Xg on watermelon powdery mildew (WPM). The test material (stock solution, ca. $4,000{\mu}g/ml$) was prepared by an autoclaved Xg culture in water at a ratio of 800 g of culture per 6 liter of water, and then filtering it through filter paper. Six foliar applications of the solutions (diluted 100- and 1,000-fold) significantly suppressed the formation of conidiophores and conidia. The inhibitory effect of aqueous potassium phosphonate solution on the disease and its phytotoxicity was tested. Phytotoxicity on watermelon plants was observed at concentrations of 1,000 and $2,000{\mu}g/ml$ as irregular brownish spots. The control efficacies against WPM were 91.9% at $2,000{\mu}g/ml$, 64.9% at $1,000{\mu}g/ml$, and 62.2% at $500{\mu}g/ml$.

Plant Growth Promoting and Disease Controlling Activities of Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 and Burkholderia stabilis ANG51 Isolated from Soil (토양에서 분리한 Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 및 Burkholderia stabilis ANG51의 식물 생장촉진 활성 및 식물병 방제활성)

  • Kim, Ji-Youn;Kim, Hee Sook;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • This study was conducted to investigate both plant growth-promoting and plant disease- controlling activities of bacterial strains isolated from soil. All the isolated strains were able to grow at various temperatures. All the strains, except ANG40, showed antagonistic effects against various phytopathogenic fungi. This antagonism can be ascribed to the production of siderophores and antibiotic substances. In addition, all the strains showed abilities such as nitrogen fixation, phosphate solubilization, and siderophore production. These results suggest that nitrogen, phosphorus, and iron can be converted into forms that can be easily absorbed by the plants for their growth. Analysis of the growth-promoting properties revealed that ANG51 produced 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) both of which are related to ethylene production. In contrast, the other strains were found to have only IAA-producing ability. Therefore, this study suggests that Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40, and Burkholderia stabilis ANG51, which were selected through analysis of comparative advantages for both plant growth promotion and disease-controlling activity, may be used as biological agents.

Toxicity Evaluation of Asarum Sieboldii Extract for Human's Safety (인체안전성을 위한 족두리풀 천연추출물의 독성평가)

  • Kim, Young Hee;Jo, Chang Wook;Hong, Jin Young;Lee, Jeung Min;Kim, Soo Ji;Jeong, So Young
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.255-266
    • /
    • 2017
  • Chemically derived pesticides have been used to prevent biological damage to domestic cultural property. However, their use is gradually being restricted due to the harmful effects on the human body and environment. Therefore, there is a growing interest in the search for new antifungal biopharmaceuticals whose safety has been confirmed by toxicity evaluation through animal experiments. This paper presents methods of toxicity evaluation of natural biocides using Sprague-Dawley rats and New Zealand White (NZW) rabbits. Safety of the natural biocide extract of Asarum sieboldii was evaluated using single-dose oral and dermal toxicity tests in Sprague-Dawley rats, and eye and skin irritation tests in NZW rabbits. The extract has proven antimicrobial and insecticidal activities against wood-rotting fungi and termites. After single oral administration to rats, the $LD_{50}$ values were determined to be over 4,000 and 2,000 mg/kg for males and females, respectively. After single dermal administration to rats, the $LD_{50}$ values exceeded 10,000 mg/kg for both males and females. The extract was identified to be non-irritant to the rabbit eye, and only slightly irritant to the rabbit skin. In this study, we confirmed the safety of the A sieboldii extract through animal testing. Due to the harmfulness of humidifier disinfectants, focus is on the safety of chemical pesticides, and toxicity evaluation is suggested as the basic method for hazard evaluation.

Gene Transfer Optimization via E. coli-driven Conjugation in Nocardiopsis Strain Isolated via Genome Screening (유전체 스크리닝으로 선별된 Nocardiopsis 균주의 대장균 접합을 통한 유전자 도입전략 최적화)

  • Jeon, Ho-Geun;Lee, Mi-Jin;Kim, Hyun-Bum;Han, Kyu-Boem;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.104-110
    • /
    • 2011
  • Actinomycetes, Gram positive soil bacteria, are valuable microorganisms which produce useful secondary metabolites including antibiotics, antiparasitic substances, anti-cancer drugs, and immunosuppressants. Although a major family of actinomycetes, known as streptomycetes, has been intensively investigated at the molecular level for several decades, a potentially valuable and only recently isolated non-streptomycetes rare actinomycetes (NSRA) family has been poorly characterized due to lack of proper genetic manipulation systems. Here we report that a PCR-based genome screening strategy was performed with approximately 180 independently isolated actinomycetes strains to isolate potentially valuable NSRA strains. Thanks to this simple PCR-based genome screening strategy we were able to identify only seven NSRA strains, followed by 16S rRNA sequencing for confirmation. Through further bioassays, one potentially valuable NSRA strain (tentatively named Nocardiopsis species MMBL010) was identified which possessed both antifungal and antibacterial activities, along with the presence of polyketide synthase and non-ribosomal peptide synthase genes. Moreover, Nocardiopsis species MMBL010, which was intrinsically recalcitrant to genetic manipulation, was successfully transformed via E. coli-driven conjugation. These results suggest that PCR-based genome screening, followed by the establishment of an E. coli-driven conjugation system, is an efficient strategy to maximize potentially valuable compounds and their biosynthetic genes from NSRA strains isolated from various environments.

Separation and Identification of Antimicrobial Substances from Green Tea Extracts (녹차추출물로부터 항균물질의 분리 및 구조동정)

  • Shin, Young-Hee;Lee, Seung-Cheol;Choi, Sung-Gil;Heo, Ho-Jin;Cho, Sung-Hwan
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.924-928
    • /
    • 2009
  • Green tea has been shown to have multifunctional health-promoting properties including cholesterol level control an antidiabetic effect and anticancer, antioxidant, and antimicrobial properties, inboth in vivo and in vitro experiments.We earlier reported antifungal and antibacterial effects of green tea extract by investigating cell membrane functions. The purpose of the present study was to purify and identify antimicrobial substances from green tea extract. Such materials were extracted from green tea (Camellia sinensis. var. sinensis) and purified by high-performance liquid chromatography. The antimicrobial substances in the extract were identified as epicatechin gallate and epigallocatechin gallate by nuclear magnetic resonance spectrophotometry.

Purification and Chemical Identification of the Inhibitor on Bleb Formation of K562 Cell Induced by Phorbol Ester from Actinornycetes Isolate No. 1882-5 (방선균 분리주 No. 1882-5로부터 Phorbol Ester에 의해 유도되는 K562 Cell의 소포형성을 억제하는 물질의 분리와 동정)

  • 안종석;안순철;박문수;김보연;민태익;이현선;오원근
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.565-573
    • /
    • 1992
  • We isolated Actinomycetes strain No. 1882-5, which produces the inhibitor on the bleb formation of K562 cell induced by phorbol ester, from soil sample. Through solvent extraction, Amberlite XAD-4, silica and Lobar low pressure LC, antifungal antibiotic MT 1882-1 and bleb forming inhibitor MT 1882-II were purified from strain No. 1882-5. MT 1882-1 was identified as piericidin $A_{1}$($C_{25}H_{37}0_4N$, M.W. 415) and MT 1882-11 as glucopiericidin A($C_{31}H_{47}0_9N$, M.W. 577) from the analysis of physico-chemical properties and UV, $^1H-NMR$, $^13C-NMR$, and mass spectra of these compounds.

  • PDF

Antimicrobial Effect of Mulberry Leaves Extracts Against Oral Microorganism (뽕잎 추출물의 구강미생물에 대한 항균효과)

  • Choi, Jeong-Lee;Jung, Mi-Ae;Jung, Sang-Hee
    • Journal of dental hygiene science
    • /
    • v.6 no.4
    • /
    • pp.251-254
    • /
    • 2006
  • In the current research for natural product with antimicrobial effects, various extracts of Mulberry Leaves against microorganisms were evaluated in terms of the minimum inhibitory concentrations(MIC). In general, Candida albicans was more antimicrobial activity than the other microorganisms such as Streptococcus mutans, Staphylococcus epidermis, and Staphylococcus aureus. The maximum activity was exhibited by ethanol extract of the leaves of Mulberry Leaves against Candida albicans (MIC, $1600{\mu}g/ml$). These results suggest that ethanol and water extracts of Mulberry Leaves have a potential antimicrobial activity.

  • PDF

Isolation of secondary metabolites from an Arctic bacterium, Pseudomonas aeruginosa and their antimicrobial activities (북극유래 박테리아, Pseudomonas aeruginosa로 부터 대사산물들의 분리 및 항진균 활성)

  • Youn, Ui Joung;Kim, Min Ju;Han, Se Jong;Yim, Jung Han
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.415-420
    • /
    • 2016
  • Chemical study of an Arctic bacterium, Pseudomonas aeruginosa (Pseudomonadaceae) led to the isolation of two diketopiperazines 1 and 2, two phenazine alkaloids 3 and 4, and an indole carbaldehyde 5, along with a benzoic acid derivative 6. The structures of the compounds were confirmed by 1D and 2D NMR, and MS experiments, as well as by comparison of their data with published values. Among the isolates, compounds 5 and 6 were isolated for the first time from P. aeruginosa of the seawater of Arctic Chuckchi Sea. Antimicrobial activities of compounds 1‒6 against a Staphylococcus aureus and Candida albicans were evaluated.

Anti-MRSA Properties of Prodigiosin from Serratia sp. PDGS 120915 (Serratia sp. PDGS 120915가 생산하는 prodigiosin의 항 MRSA 특성에 관한 연구)

  • Ji, Keunho;Jeong, Tae Hyug;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Prodigiosin, a member of natural red pigment family, is produced by Serratia marcescens, and characterized by a common pyrrolylpyrromethane skeleton. This pigment has been reported with the effects of anticancer, immunosuppressant, antifungal, and algicidal activities. Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital infections. In this study, anti-MRSA properties of prodigiosin isolated from Serratia sp. PDGS 120915 were investigated. We identified and purified prodigiosin using high performance liquid chromatography (HPLC) and evaluated anti-MRSA activity. Purified prodigiosin inhibited the growth of MRSA. The minimum inhibitory concentrations (MICs) of prodigiosin were determined to $32{\mu}g/ml$ against the MRSA strains. Fractional inhibitory concentration (FIC) indices of ampicillin and penicillin were indicated synergistic effects of prodigiosin on MRSA.