• Title/Summary/Keyword: 항복 함수

Search Result 143, Processing Time 0.025 seconds

Reliability analysis of LNG unloading arm considering variability of wind load (풍하중의 변동성을 고려한 LNG 하역구조물의 신뢰성해석)

  • Kim, Dong Hyawn;Lim, Jong Kwon;Koh, Jae Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.223-231
    • /
    • 2007
  • Considering wind speed uncertainty, reliability analysis of the LNG unloading arm at Tongyoung Production Site was performed. Extreme distribution of wind speed was estimated from the data collected at the weather center and wind load was calculated using wind velocities and coefficients of wind pressure. The unloading arm was modeled with plate and solid elements. Contact elements were used to describe the interface between base of structure andground. Response surface for maximum effective stress was found for reliability analysis and then reliability functions was defined and used to determine exceeding probability of allowable and yield stresses. In addition, sensitivity analysis was also performed to estimate the effect of possible material deterioration in the future.

Elastic-plastic Micromechanics Modeling of Cross-anisotropic Granular Soils: I. Formulation (직교 이방적 사질토의 미시역학적 탄소성 모델링: I. 정식화)

  • Jung, Young-Hoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.77-88
    • /
    • 2007
  • A micromechanics-based model to simulate the elastic and elastic-plastic behavior of granular soils is developed. The model accounts for the fabric anisotropy represented by the statistical parameter of the spatial distribution of contact normals, the evolution of fabric anisotropy as a function of stress ratio, the continuous change of the co-ordination number relating to the void ratio, and the elastic and elastic-plastic microscopic contact stiffness. Using the experimental data for metallic materials, the elastic-plastic contact stiffness is derived as a power function of the normal contact force as well as the contact force initiating the yielding of contact bodies. To quantitatively assess microscopic model parameters, approximate solutions of cross-anisotropic elastic moduli are derived in terms of the micromechanical parameters.

The Rheological Characteristics of Wyoming Bentonite: Role of Salinity (와이오밍 벤토나이트의 유변학적 특성: 염분농도의 역할)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.81-92
    • /
    • 2011
  • The rheological properties of Wyoming bentonites are strongly influenced by the size of particles, cation exchangeable capacity, arrangement and morphology of clay mineral. This paper presents the results of rheological investigations on the Wyoming bentonites aqueous dispersions: two types of particle flocculation were considered. For the Wyoming bentonite, 0g/L and 30g/L NaCl equivalent salinity were added in fresh and salt water to examine the rheological behavior. This paper examined the general rheological characteristics, compatibility of rheological models and correlation between soil structure and change in rheological properties of Wyoming bentonite caused by increasing salinity. From flow curves of bentonites hydrated with fresh water and salt water, the observed general flow behavior is very close to shear thinning with yield stress (or ideal Bingham fluid with yield stress and plastic viscosity). However, the change of shear stress at the same shear rate is clear, particularly for lower shear rate. Well-known rheological models are used to fit the data. There is a good agreement between rheological model and data: Carreau, Herschel-Bulkley and power-law for S=0g/L and bilinear, Herschel-Bulkley and power-law for S=30g/L. It may be due to the fact that the internal structural bonding (strong modification of particle-particle interactions from edge-to-edge and/or edge-to-face to face-to-face) in soil matrix is affected from the evolution of rheological properties with different salinities.

Model Tests on the Lateral Behavior of Steel Pipe Piles(I) in the Nak -dong River Sand (강관말뚝의 수평거동에 대한 모형실험 연구(I) -대구지역 낙동강 모래에 대하여)

  • 김영수;허노영
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.59-74
    • /
    • 1997
  • This paper shows the results of a series of model bests on the behavior of single steel pipe pile which is subjected to lateral load in Nak-dong river sand. The purpose of the present paper is to estimate the effect of Non -homogeneous soil, constraint condition of pile head, lateral load velocity, relative density of soil, embedded pile length, and flexural stiffness of pile on the behavior of single pile which is embedded in Nak-dong river strand. These effects can be quantined only by the results of model tests. The nonlinear responses of lateral loadieflection relationships are fitted to 2nd polynomial equations by model tests results. Also, the lateral load of a deflection, yield and ultimate lateral load max. bending moment, and yield bending moment can be expressed as exponential function in terms of relative density and deflection ratio. By comparing Brom's results with model results on the lateral ultimate load, it is found that short and long pile show the contrary results with each other. The contrary results are due to the smaller assumed soil reaction than the soil reaction of the Nakiong river sand at deep point. By comparing lateral behavior on the homogeneous soil with non-homogeneous soil, it is shown that lateral loadieflection relationship is very dependent on the upper relative density. This phenomenon is shown remarkably as the difference between upper and lower relative density increases.

  • PDF

Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties (유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.597-608
    • /
    • 2009
  • In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

Effect of Fly Ash on Rheology and Strength of Recycled Aggregate Concrete (순환골재와 플라이애쉬가 콘크리트 유동성 및 강도에 미치는 영향)

  • Kim, Kyu-Hun;Shin, Myoung-Su;Kong, Young-Sik;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.241-250
    • /
    • 2013
  • As the amount of construction wastes increase, reuse of demolished concrete is being considered in research areas. Reflecting these interests, this experiment was performed to clarify concrete's mechanical property and workability using recycled aggregate as a coarse aggregate. Eleven cases of concrete specimens were produced by changing the rates of replacement of coarse recycled aggregate, replacement of fly ash, design strength, and moisture state of coarse aggregate. Compressive and tensile split strength tests were taken to study the mechanical properties of hardened concrete. To verify flowability of fresh concrete, a slump test and a flow curve test using ICAR Rheometer were performed. It was found that using recycled aggregate and fly ash leads good workability by testing slump and flow curve. The yield stress of fresh concrete decreased with increase of recycled aggregate substitution rate. Through the test, it was confirmed that there is inversely proportional relationship between the slump and yield stress roughly. Recycled aggregate concrete containing fly ash has considerably lower plasticity viscosity than not containing fly ash. Strength test results showed that recycled aggregate tended to decrease compressive and tensile strength of concrete, when recycled aggregate was used as a coarse aggregate. Using over 30% recycled aggregate caused significant decreases in compressive and tensile strength. Replacing 30% cement with fly ash was helpful to improve the long-term strength of concrete.

A Method of Measuring the Plastic Properties of Materials using Spherical Indentation (Spherical Indentation 실험을 이용한 재료 소성 물성치 측정방법)

  • Li, Guanghe;Kang, Yoon-Sik;Xi, Chen;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.353-360
    • /
    • 2010
  • In this paper, an efficient algorithm is established in order to estimate the plastic properties of power-law hardening bulk specimen materials with one simple spherical indentation impression test. This work is based on a new formulation of representative strain and, therefore, compare to the preceding approaches the fitting parameters are significantly reduced. Moreover, the new definition of representative strain endowed more physical meaning to the representative strain. In order to verify the reliability of the reverse analysis, we have studied a broad set of materials whose property ranges cover essentially all engineering metals and alloys. Based on the indentation force-displacement P-${\delta}$ curves obtained from numerical simulations, the characteristics of the indentation response and material elastoplastic properties are bridged via explicit functions. Next, through the procedure of reverse analysis the yield stress and power-law hardening exponent of bulk specimen materials can be determined. Finally, good agreement between the result from reverse analysis and initial input data from experiment can be observed.

A Constitutive Model on the Behavior Under $K_0$ Condition for Cohesionless Soils and Optimization Method of Parameter Evaluation Based on Genetic Algorithm (사질토의 $K_0$ 조건하 거동에 대한 구성모델 및 유전자 알고리즘을 적용한 계수의 최적화 산정기법)

  • 오세붕;박현일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.37-48
    • /
    • 2004
  • This study is focused on the constitutive model in order to represent brittleness and dilatancy for cohesionless soils. The constitutive model was based on an anisotropic hardening rule derived from generalized isotropic hardening nile, which includes an appropriate hardening equation for the overall strain behavior at small to large strains. The yield surface is a simple cylinder type in stress space and it makes the model practically useful. Hence dilatancy behavior in cohesionless soils could be modeled reasonably. A peak stress ratio was defined in order to model brittle stress-strain relationships. An optimized design methodology was proposed on the basis of real-coded genetic algorithm in order to determine parameters for the proposed model systematically. The material parameters were then determined by that algorithm. In order to verify the proposed model, triaxial tests were performed under $K_0$ conditions far weathered soils. In comparison with the triaxial test results under $K_0$ conditions, the proposed model could calculate appropriately the actual effective stress behavior on brittle stress-strain relationships and dilatancy.

Changes in Rheological Properties of Culture Broth During the Biopolymer Production by Bacillus sp (Bacillus sp.에 의한 생물 고분자의 발효 중 배양액의 유변학적 특성 변화)

  • 이신영;이주하
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.340-346
    • /
    • 1996
  • Variations of rheological properties of culture broth during the production of biopolymer by an alkali tolerant Bacillus sp. were investigated. Correlations among the rheological characteristics of culture broth, cell growth and biopolymer production were examined. Rheology of the culture broth changed in the course of fermentation. The culture broth showed a non-Newtonian flow behavior, as the viscosity and pseudoplasticsity increased during the cultivation. The rheological parameters such as flow index, consistency index, yield stress and apparent viscosity during the cultivation were not influenced by the cell growth, but significantly related to the biopolymer synthesis. Changes in the rheological parameters of the broth were affected not only by the biopolymer concentration, but also by the progress of fermentation. Some rheological parameters showed maximum values just before the completion of biopolymer production and substrate consumption. Hence, it was shown that the rheological characteristics of the culture broth could be used as a good indicator for the detection of the progress or completion of fermentation.

  • PDF

Response Modification Coefficient Using Natural Period (고유진동주기를 이용한 응답수정계수)

  • 김희중
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.229-237
    • /
    • 1996
  • In some current procedures, ground motions from different sources have been scaled by their peak ground accelerations and combined to obtain smoothed response spectra for specific regions. As consideration of the inelastic deformation capacity of structure, inelastic deformations are permitted under seismic ground excitation in all codes. In the ATC(Applied Technology Council) and UBC(Uniform Building Code), the inelastic design spectrum is obtained by reducing the elastic design spectrum by a factor that is independent of structural period. In this study, the average of nonlinear response spectra calculated from a sample of 20 records for each event are constructed to obtain the smoothed response spectra. These response spectra are used to examine the effects of structural strength factors such as the yield strength ratio and damping value. Through the regression analysis of nonlinear response of system for a given damping value and yield strength ratio, the required yield strength for seismic design can be estimated for a certain earthquake event. And a response modification coefficient depending on the natural period for current seismic design specifications are proposed.

  • PDF