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Elastic-plastic Micromechanics Modeling of Cross-anisotropic
Granular Soils: 1. Formulation
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Abstract

A micromechanics-based model to simulate the elasti

¢ and elastic-plastic behavior of granular soils is developed.

The model accounts for the fabric anisotropy represented by the statistical parameter of the spatial distribution of
contact normals, the evolution of fabric anisotropy as a function of stress ratio, the continuous change of the
co-ordination number relating to the void ratio, and the elastic and elastic-plastic microscopic contact stiffness. Using
the experimental data for metallic materials, the elastic-plastic contact stiffness is derived as a power function of
the normal contact force as well as the contact force initiating the yielding of contact bodies. To quantitatively

assess microscopic model parameters, approximate solutions of cross-anisotropic elastic moduli are derived in terms

of the micromechanical parameters.
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1. Introduction

Recently, a number of sophisticated constitutive models
(e.g. Einav and Puzrin 2004; Pestana et al. 2002;
Stallebrass and Taylor 1997) based on the traditional
continuum mechanics have been developed to incorporate

plenty of new information on soil behavior. Data showing
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severe nonlinearity in stress-strain responses force a new
elastic-plastic model into employing a number of yield
surfaces as well as increasing the number of model
parameters. Even in the so-called simplified pseudo-elastic
model (e.g. Jung et al. 2004; Puzrin and Burland 2000),
higher-order nonlinear equations are inevitable to match

its simulation with realistic soil responses. Unfortunately,
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such great effort based on the continuum mechanics does
not guarantee that one can simulate a realistic nonlinear
response of soils in the whole range of deformation.
Obviously, a simple reason contributes to unsatisfactory
performance of the conventional continuum-based soil
models: soil is not a continuum material but a particulate
material.

Micromechanics theory, in which the interaction among
contacts of particles at the micro scale is being scaled
up to calculate the macroscopic deformation, is a viable
alternative to the traditional continuum mechanics in soil
modeling. For the last two decades, two different types
of micromechanics approaches—discrete element method
and microstructural continuum mechanics—have been
used to simulate the nonlinear behavior, especially of
granular soils. The discrete element method (Cundall and
Strack 1979), in which the interaction between two particles
is computed explicitly to retrieve the macroscopic stress-strain
data, usually requires a new workspace in computation
and interpretation, whereas the microstructural continuum
mechanics incorporates a conventional form of incremental
stress-strain relationships in the calculation. Currently,
significant efforts in the microstructural continuum mechanics
(hereinafter called the micromechanics) have been devoted
to the interpretation and simulation of various aspects of
nonlinear responses in granular soils. Theoretical micro-
mechanics analysis on the soil elasticity has made progress
beyond the classical studies on regular packing structures.
By using homogenization techniques, Chang et al. (1995)
and Liao et al. (2000) proposed the analytical solutions
of elastic moduli for a random packing assembly with
the anisotropic fabric and the nonlinear contact stiffness,
respectively.

The primary focus of this paper is to develop the
micromechanics-based elastic-plastic constitutive model
to simulate the nonlinear cross-anisotropic behavior of
granular soils. The model accounts for the fabric anisotropy
represented by the statistical parameter of the spatial
distribution of contact normals, the evolution of fabric
anisotropy as a function of stress ratio, the continuous
change of the co-ordination number relating to the void

ratio, and the elastic and elastic-plastic microscopic contact
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stiffness. The microscopic behavior in a single contact
point is thoroughly examined for the various states of
contact geometries to find the best expression of the
microscopic contact stiffness accounting for the naturally
generated heterogeneity of the contact surface of granules.
In addition, the approximate analytical solutions of
cross-anisotropic elastic moduli and the simple linear
relationship between the degree of fabric anisotropy and
the stress ratio are provided to finely calibrate the micro-

scopic parameters in the model.

2. Micromechanics Formulation

The computational scales of the micromechanics approach
can be categorized into three different levels: (i) the
macroscopic level in which for an assembly of particles
the boundary stresses and strains are related by integrating
all the information from the lower levels, (ii) the
inter-contact level in which the contact density and the
orientation of each contact are statistically described, and
(iii) the microscopic level in which a law relating the force
acting on a particular orientation of the contact plane to

the corresponding displacement is established.

2.1 Notation and Main Assumptions

As shown in Fig. 1, two different reference frames—the

global (x1 - x; - x3) and local (s - £ - n) reference framess—

A lslm

X1

Fig. 1. Global and local coordinate systems in the unit sphere



are used to describe the macroscopic and microscopic
behaviors in a separate way. Any nonscalar quantity
describing the microscopic response at a single contact
point is denoted by ‘A in the local reference frame and
A in the global reference frame. The transformation of
the quantity from the local reference frame to the global

frame can be done by defining the rotation matrix, R,

as:

s Lon cosycosff —sinf sinycosf
R=|s, t, n,|=|cosysinff cosf sinysinf

sy tom ~siny 0 cosy | (1)

where v and 3 represents the angles in the global reference
frame as indicated in Fig. 1, and 7, s;, and # denote the
component of the unit vectors, n, s, and t corresponding
to the orthogonal axes of the local reference frame,
respectively. Thus, a quantity A in the global reference
frame will be transformed by fA=R'A in the local
reference frame.

As shown in Fig. 1, the branch vector, 1, represents
the vector connecting the centroids of two contacting
granules. The branch vector for the ¢-th contact point can

be expressed by
1°=1"'m"* )

where / and m are the branch length and unit branch
vector, respectively. For the finite number N of contacts
within the assembly, a fabric tensor, Fy, is given by (Oda
et al. 1982),

1 N
i 1, licmc'
LV Zl ’ (3)

where N is the total number of contacts, ¥ is the volume
of the particle assembly. A transition to continuously
distributed branch vectors can be achieved by introducing
an orientation distribution function (ODF), E(m), which
gives the relative density of the branches whose vectors
have the same orientation (v, §) in the unit sphere, Q.
Assuming that the distribution of branch lengths is
continuous and also uncorrelated with that of branch

vectors, the fabric tensor can be rewritten as,

F, = % é[l,.ij(m)dQ = ]-;J S!.ml.ij(m)dQ = %Z (mm,) @
where ] is the overall average of branch lengths. It is
noted that the use of the mean value of branch length
distribution, in principle, resorts to the assumption on an
ideal assembly with equal-sized spheres. For further
simplification, it is assumed that (i) the shape of particles
is spherical, thus replacing the branch vector, m, with the
contact normal, n, and (ii) the distribution of branch
lengths are represented by /7 which is equal to the mean
diameter of particles, d,, for the assembly of equal-sized
spherical particles. Detailed discussion on the fabric tensor
of the polydisperse granular materials can be found in
Madadi et al. (2004).

The angle brackets in the last term of Eq. (4) denotes
the weighted average operator using the continuous function
of E(m). Thus, a quantity within the angle brackets
represents the microscopic quantity at the contacts with
the same direction of m prior to considering the relative
contact density with its orientation. It is also worth noting
that herein the term ‘microscopic’ means the averaged
micro-directional response over the contacts sharing a
given direction of the contact normal, rather than the
individual response at each contact point.

The orientation distribution function, E(n), expressed

by the angle v and 3, needs to satisfy

2nm

J E(n)dQ = Zl; oj 6[5(7, B)sin ydydf =1 (5)

where E(vy, f)sinvy is the relative number of contacts with
orientation (v, 3). According to Chang et al. (1989), the
function of E(n) for the cross-anisotropic material can be
expressed by the second-order spherical harmonics with
the symmetry of the vertical axis in the global reference

frame, x3, (i.e. the function of ~), as:

3(1+acos2y)

Em)=E(y) =
(n)=E(y) Goa) ©)

where a is the so-called ‘degree of fabric anisotropy’ (-1
< g < 1) which controls the shape of the angular

distribution of contact normals.
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The contact density, g, which denotes the average
number of contacts per unit volume, can relate to the void
ratio for the assembly of equal-sized particles by adopting
the published empirical relationship (Chang et al, 1991;
Mehrabadi et al. 1982) as:

3¢,  3(13.28-8¢)

n

miy(l+e)  miy(l+e) ¢

LA
Pe=7

where ¢, is the co-ordination number indicating the mean
number of contacts per particle, d; is the mean diameter
of particles, and e is the void ratio. As noted by Nicot
and Darve (2006), a single relationship between the void
ratio and the co-ordination number used in Eq. (7) may
not be valid after the failure peak for dense materials
where the dilatancy induces the major change in the void
ratio without changing the co-ordination number. Herein,
we limit our discussion to the non-dilative deformation
of granular soils, This is also necessary for interpreting
the experimental data because the empirical correlation
between macroscopic elastic moduli and principal stresses,
which is essential to describe the experimental soil elasticity
in this research, no longer apply when the dilatancy of
the specimen occurs (Kuwano and Jardine 2002; Yu and
Richart 1984). As the void ratio changes during loading,
the value of co-ordination number keeps updated in the
incremental formulation of the micromechanics constitutive

model.

2.2 Relationship Between Microscopic and Macro-
scopic Quantities

Following the well-established average procedure
based on principle of virtual work (Chang et al. 1989;
Christoffersen et al. 1981; Love 1927; Mehrabadi et al.
1982), the macroscopic stress tensor, Oy, can be expressed

in terms of the microscopic contact forces, f, as:

o, = p.d, [fn EmdQ
o 8

Instead of the kinematic assumption of the uniform
deformation field, the average macroscopic strain tensor,

&, derived from a least square minimization of the mean
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displacement field (Emeriault and Chang 1997; Liao et
al. 1997), is employed. The expression of & in terms of

the contact displacement, &, is given by,

& = p, [8, n Fy Em)dQ
& ®

where F;' is the inverse of the fabric tensor, F, in Eq.
4.

'The macroscopic stress-strain relationship can be derived
in either of two different approaches: one is the kinematic
hypothesis where the stress-strain relationship is derived
from the average stress in Eq. (8) along with the assump-
tion of the uniform deformation field, given by

g =¢,l;=¢,d.n, (10)

Another approach is the static hypothesis where the
derivation of the stress-strain relationship starts from the
average strain definition in Eq. (9), followed by the static
hypothesis equation (Chang et al. 1995; Chang and Gao
1996; Liao et al. 2000, Liao et al. 1997) defining the mean

contact force on a given contact orientation as:

fi=on ity (11)

Herein, the static hypothesis approach is used because
the static hypothesis equation accounts for the effect of
strain fluctuation in a granular material (Liao et al. 1997)
and provides the local magnitude of the contact force
directly to the microscopic contact stiffness. In order to
match the empirical correlation of the elastic moduli, the
incremental form of the elastic constitutive equation is
derived.

Differentiation of Eq. (9) yields the incremental macro-

scopic strain as

& = p. [8,nF} Em)dQ+ p, [6,7,F; Em)dQ
Q Q

+ Pe .[51 nij;E(n)dQ + P, J‘é‘z nkF}kE(n)dQ (12)
Q Q

As inferred by Eq. (12), a full description of the

macroscopic responses requires the proper formulations

including (i) the elastic and plastic micro-macro responses



for the condition of the fixed packing structure (i.e. first
term in Eq. (12)), and (ii) the change of packing structure
or the fabric evolution (i.e. terms for #;, E{l, and E(n)).
The elastic-plastic micro-macro response can be taken into
account by extending the local contact stiffness to the
elastic-plastic model. However, the rigorous formulations

related to the change of packing structure may be difficult

to derive because 7, F,-fl and E(n) correlate to each other
in the static hypothesis formulation and, in principle, results
from the particle rotation and spin as well as the tangential
elastic-plastic displacement in the contact planes. Within
the kinematic assumption of the uniform deformation
field, Darve and Nicot (2005) and Nicot and Darve (2006)
provided the in-depth platform for the incrementally
nonlinear formulation of the complete micromechanics
model considering the fabric evolution. In an alternative
way, the change of packing structure, E(n), can be
investigated exclusively by tracing possible differences
between the elastic moduli measured in the experiment
and the micromechanics-based elastic stiffness during
loading. Herein, we employed the alternative method to
measure the evolution of fabric as will be shown in the
subsequent paper. Therefore, the further formulation in
the micromechanics model will focus on the incremental
formulation of stress-strain relationship via the elastic-plastic
contact stiffness. It is assumed that the statue of the fabric
in an increment is constant; however, the state of soil
fabric expressed by E(m) keeps updated as the stress
changes during loading.

For a given state of the fabric, Eq. (12) yields the

incremental strains as

&, = p. |8 nF Em)dQ
' pi e (13)

Replacing 51- with the incremental contact force, fh

yields

& =p. [(KE)" fon Fy Em)dQ
& (14)

where K represents the elastic-plastic contact stiffness

tensor, which relates the incremental contact force to the

incremental contact displacement as:
fi=Kj6; (15)

By substituting the incremental form of Eq. (11} for
the fixed packing structure into Eq. (14), the macroscopic

compliance tensor, C;-fcz, can be formulated as:
g, =Cpby = { p. [, FNKDY (n, )E(n)dQ}o"k, 6
Q

Adopting the conventional notion of elastic-plastic strain
decomposition, the elastic strain-stress relationship can be

derived by
& =C6, = { 2. j (n, Fy XK (n,F,) )E(n)dﬂ}o",d a”
Q

where 55’ is the elastic strain increment, C;‘Ild is the
macroscopic elastic compliance tensor, and Ky is the
microscopic elastic contact stiffness. A simple numerical
integration method is used to approximate the integral in
Eq. (17), while some researchers (e.g. Bazant et al. 2000,
Fang 2003; Hicher and Chang 2005) have introduced the

optimal Gaussian formula to reduce computational time.

3. Nonlinear Contact Stiffness Model

The contact stiffness model in the microscopic level
defines the relationship between the contact force and
contact displacement. Assuming no coupling effect between
the elastic responses in the normal and that in the
tangential directions on a contact plane, the elastic contact
stiffness in the global reference frame, Kj;, can be related
to that in the local reference frame, ®Kj, as follows:
K, =%K, 5,5 +*K bt +*Kymn =k nn +5k, (s;s, +11;) (18)
where #K, and ®K, are the normal and tangential contact

stiffnesses in the local reference frame, respectively.

3.1 Geometry of Contact Surfaces

The area of contact under an incipient contact force
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{a) smooth sphere

{b) blunt cone

{c) sphere with a local
axisymmetric
irregularity

(d) rough surface

Fig. 2. Geometry of contact surface

and the distribution of the pressure acting on the contact
area determine the contact stiffness. Soil particle, generally,
has a significant order of irregularity on its geometry of
surfaces. Thus, the severe idealization of the geometry
of contact surface is inevitable to measure the area of
contact and the distribution of contact pressure.

In the theory of tribology, the idealized geometry for
the axisymmetric contact surface can be categorized as:
(i) smooth sphere, (ii) blunt cone, (iii) sphere with a local
axisymmetric irregularity, and (iv) rough surface with the
numerous irregularities, as illustrated in Fig. 2. While the
assumption of smooth sphere leads to severe restriction
to simulate the real contact phenomena, the expressions
established for this geometry such as the Hertzian contact
(Hertz 1882) serve as a basic formulation for the contact
force-displacement relationship for the other contact geo-
metries. For the contact problems of the granular soils,
it may be reasonable that the geometry of contact surfaces
is idealized as the rough surface for the larger paticles
or the sphere with a local axisymmetric irregularity for

the smaller particles.

3.2 Elastic Contact Stiffness

The normal elastic contact stiffness is formulated as
a general form based on the classical Hertz theory for

the contact between two smooth spheres, as:

ki =c, (5,1 )™ (19)
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where %f, is the normal contact force in the local reference
frame, f.r is the reference force (1 kN), used as a
normalizing constant, ¢; and @, are the material constants
which relate to the geometry of contact and material

properties. For instance, the Hertz’s model yields
e =Br.G (1-v,)'1” and & =1/3 (0)

where 7. is the radius of curvature of the contact surface,
G, and v, are the elastic shear modulus and the Poisson’s
ratio of particles, respectively. The general form of the
normal contact stiffness given in Eq. (19) can be adopted
for various contact conditions, which do not obey the ideal
condition in the Hertz’s theory, such as the contact of
a blunt cone on the plane (Goddard 1990) and the contact
between the rough surfaces (Yimsiri and Soga 2000). For
the contact in the spheres with a local axisymmetric
irregularity, which closely simulates the realistic contact
behavior in the granular soils, Jager (1999) shows that
the exponent in the equation of the normal contact stiffness
(e.g. @ in Eq. (19)) is greater than 0.5 when the surface
has an acute peak and this value decreases as the
irregularity becomes flatter as shown in Fig. 3.

The tangential elastic contact stiffness is also formulated
as a general form based on the Mindlin’s model without

partial slippages (Johnson 1985; Mindlin 1949), given by
ki =c'tk; @1)

where ¢/ denotes the proportional factor, which relates
to the bulk elastic distortion. Herein, the Mindlin’s tan-

gential contact stiffness model is adopted, thus leading to
Cfl =2(1—Vg)/(2—1/g) (22)

In summary, the contact stiffness model in Egs. (19)
and (21) requires three parameters of ¢, . and c’.
By referring to published values of the Poisson’s ratio
for a specific mineral type of particles, one can easily
determine ¢’ based on Eq. (22). However, determination

of ¢ and @ is not straightforward because these

parameters relate not only to mechanical properties of



particles but also to geometries of the contacts.

3.3 Elastic-plastic Contact Stiffness

The solutions for the contact in the elastic bodies
remain valid until the applied load is sufficiently large
so as to initiate plastic deformation. When the internal
stress at a specific point within the contact body reaches
the yield strength of material, the yielding will be initiated.
However, the plastic zone at the initial yielding stage is
very small and fully contained by the material which
remains elastic. In this circumstance, the material displaced
by the indenter is accommodated by an elastic expansion
of the surrounding elastic solid. Thus, the elasticity of
material plays an important part in the early stage of the
plastic indentation process. As the indentation becomes
more severe, the plastic zone breaks out to the free surface
and the material reaches a fully plastic state.

The three ranges of loading: purely elastic, elastic-plastic
and fully plastic are the common feature of most engi-
neering materials. The early two stages of contact loading
(i.e. purely elastic and elastic-plastic stages) are likely to
appear in the perfect plastic or brittle materials including
the granular soils. For the strain-hardening material such
as steel and bronze, the plastic flow or straining conti-
nuously occurs in the fully plastic state with the increasing
contact pressure. However, the additional resisting of the
strain-hardening material at the fully plastic stage cannot
be expected in the brittle material. A sudden drop of
stiffness or an unlimited plastic flow will occur and the
brittle particles will be crushed.

If the contact force acting on a single contact point
is below a specific value which yields the crushing or
fully plastic failure of the particle, it could be postulated
that the elastic-plastic contact behavior of granular soils
exhibits the same response in the metallic materials. It
is also expected that the response of granular soils at the
elastic-plastic stage involves the irrecoverable volumetric
compression associated with progressive crushing of the
materials. If this hypothesis is correct, one can formulate
the elastic-plastic contact stiffhess of granular soils using

the experimental data on the force-displacement relations

at the elastic-plastic stage of metallic materials.
Johnson (1985) summarized the experimental data on
the normalized force-displacement relationship in the
metallic material for the case of penetration of a spherical
indenter into an elastic-plastic half-space, as shown in Fig.
4. According to Adams and Nosonovsky (2000), both the
Tresca and the von Mises theories predict the onset of
yielding induced by the spherical indenter when
_a(-v,)

Y 5=

_ml(1-v,)’
- 2
8G: and 4G, (23)

fr

where fy represents the maximum contact force to initiate
yielding of the contact, &y is the corresponding displace-
ment at the onset of yielding, 7. is the radius of curvature
at the contact point, and Y is the yield stress of material.
Johnson (1985) reported that the material reaches the fully
plastic stage when f, =400fy for the metallic materials.
Accordingly, the experimental data on the limited range
of 1 =<f/fy <400 can be used to formulate the
elastic-plastic contact stiffness.

In this study, it is assumed that the normalized
force-displacement relationship at the elastic-plastic stage
can be expressed by an exponential function similar to

the elastic case, given by

if_n= g5,, 6 s i ijl}w
fy Sy and O, Iy (24)

where & is the material constant governing the power
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Fig. 3. Transition pressure plotted against o for the FCC packing
of quartz
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relationship in the elastic-plastic contact deformation. The
interpolation over the experimental data given in Fig.
4 indicates that the value of exponent &=1.28. By
differentiating Eq. (24), the elastic-plastic contact stiffhess

can be expressed as

(6-1)/6
gl = a¥, =€A A _ H(fy)l/g (gf )(6—1)/6
tods, 45, Sy Oy ’ 25)

For 6=1.28, the exponent of elastic-plastic contact
stiffness (£-1)/6=022. In the elastic-plastic contact,
the pressure distribution of plastic indentation spreads
over larger area than that in the Hertz contact model. The
response in the elastic-plastic contact of spherical indenter
could represent the responses for other contact geometries
based on the observation of Samuels and Mulhearn (1956)
and Mulhearn (1959), who reported that the subsurface
displacements produced by any blunt indenter (cone, sphere
or pyramid) are approximately radial from the point of
first contact, with roughly hemi-spherical contour of the
equal strains. Herein, the generalized elastic-plastic contact

stiffness is used given by

kP =c?Cf, ] f) (26)

where ¢, is the material constant relating to fy, &, and
6 as introduced in Eq. (25), and @, is the exponent with
the value of 0.22 based on the experimental data for the
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metallic materials, and f,.r is the normalizing constant (1
kN).

Considering the origin of friction induced by plastic
deformation of contact, Mindlin’s model including micro-slip
could be regarded as one of the idealized formulations
of the tangential contact stiffness of elastic-plastic bodies.
Herein, we employ a function that approximates the
expressions of Mindlin and Deresiewicz (1953) for the

tangential contact stiffness as follows:

gf aF gf [
skP =tk l-—Lr | =y 1o

where k] is the initial tangential stiffness, and @;” is a
fixed parameter usually set to 1/3 to agree with Mindlin’s
theory. The parameter ¢, represents the distortion during

tangential loading on the elastic-plastic bodies, which is

certainly similar to ¢’ because most part of contact bodies
still deform elastically even under the plastic indentation

and the tangential loading. Thus, it is assumed that the

value of Cfl is the same as that of Cfl.

For the general case of contact geometry, the value of
a? is different from 1/3. Walton and Braun (1986)
reported that experimental measurements of initial displace-
ments of frictional forces acting between metals in contact
of non-spherical bodies produce force deflection curves
with a more gradual change in slope, as would be produced
with a larger value for the exponent «,”. However, specific
ranges of the exponent have not been reported yet in the
literature. Thus, one can only expect that in the contact
with the irregular surface of granular soils the value of

a” would be greater than 1/3.

4. Approximate Solutions of Cross—anisotropic
Elastic Moduli

A constitutive equation based on the micromechanics
theory requires a relatively small number of model para-
meters. However, the determination of such parameters,
especially for the microscopic contact stiffness, is not
straightforward. One of the reasonable ways to determine

such parameters is to compare the closed-form solutions



of macroscopic elastic moduli expressed by these parameters
to the experimental data obtained in the macroscopic scale.
However, rigorous solutions accounting both for the
nonlinear contact stiffness and the anisotropic fabric cannot
be derived (Emeriault and Cambou 1996). Herein, instead
of developing a rigorous form of equations, the approximate
approach to obtain closed-form solutions is attempted.

If a soil assembly consisting of the spherical particles
with the symmetric distribution of contact orientations is

subject to the isotropic stress of g, Eq. (11) becomes
fi=onF . ) :O'onzF{zl, and J3= 0'0”3F3;1 (28)

The contact forces in the local reference frame can be

obtained from Eq. (28) via the transformation rule:
-1 -1 -1
“fo=oglFymn 4 Fynon, + Fingng ]
% -1 -1 -1
o= ol Fy ms + F s, + Fings,]
g £ _ -1 -1 -1
Jo =0l Fy mt + Fyngt, + Fingt, ] (29)
where °f, is the local contact force along the contact
normal (i.e. n-direction), and % and %/, are the tangential
contact forces in two tangential directions (i.e. s- and t

directions). The inverse of the fabric tensor, F; ,j'l, can be

decomposed into two parts:

1
F1=F|0
0

S|

00 000
U ; 1 O|+F, 0 0 O
0 1 00 1 (30)
where F, =53-a,)/p.d,(5-3a,), F,=-20a,3-a,)
1p.d,(5-3a,05+a), and ao is the degree of fabric
anisotropy in the isotropic stress condition. By substituting
Egs. (1) and (30) into (29), the local contact forces can

be expressed as:
$f =F o,+F,0,cos’y
¢f. =—F,0,cosysiny
£f,=0 31)

Thus, the normal elastic contact stiffness in Eq. (19)

becomes

ke =l (Foy ) L) 1+ (B Fyeos’ 7 5

Assuming that the term of (F,/F,)cos’ y can be ignored,

the local contact stiffnesses can be simplified as:
“ky = (F,00 1 £)™ and K =clfk 33

The elastic contact stiffness matrix in the global coor-

dinate is given by
K =tk nn +5k (s;5, + 1))
= CSI(Fado /f,ef)“[n[nj +cfl(sl.sj +1,1,)] (34)
Substituting Eq. (34) into (17), the approximate solutions

of the cross-anisotropic elastic moduli and Poisson’s ratios

in the isotropic stress condition can be derived as follows:

[ 1d2p,(5+a,) s6-a) |° .
T 5B a)14-2a, 4+ ¢ 2149a)} | pod, £y 53| " (35a)
o _ el 7d;pc(5 73‘10)2 T 53-ay) I§ 2!
E=e c"[75(3—a0){14—6a0 T @150} | pod, £,y G- 3ay) | (o) (35b)
2 2 2 r 3
o _ el el Tdgo (5 -3ag)" (5+ag) 5(3-a,) i’
Ga=ere 05460232 | | Py (530, | )
GG 40 +e¥ 70240+ 2a3) (35¢)
G =t el_ 7d;p¢(5—3aﬂ)2 T 53-a,) ' (o. )%‘I“
" 0GB - g 21~ 1ay + 67 (8 —100,)) || podfyG=3a) | (35d)
el
el = (7T-a))5+a)(-¢c)
" (5-3a,)(14-2a, + ¢ (21+9a,)} (35¢)
]
o (T-a)5-3a)1-¢)
" (5+a,){14-6a, +c (21-15a,)} (356)
Ve = (7_55’0)(1_051)
" {14—6a, +c (21-15a,)} (359)

It should be noted that the error in the approximate
solutions depends on the magnitude of ay because we
ignored the term, F,/F, =—4a, /(5+a,), to produce the
normal contact force which is not correlated to the contact
orientation. For the case that @2 =0.5 and ¢’ =0.824 (ie.
' =2(1-v)/(2-v) with v, =0.3 for quartz), the ratios
between the elastic moduli from approximate solutions

and those from Eq. (17) are plotted against the magnitude
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Fig. 5. Variation of |n—04 for the various values of 4

of ap in Fig. 5. As can be seen in Fig. 5, the ratio of
elastic moduli ranges between 0.9 and 1.1 for the values
of ap in between -0.5 and 0.3. When considering the low
degree of anisotropy in the isotropic stress and the level
of accuracy of measurement in the experiments, such
magnitude of errors in the approximate solutions is
practically acceptable in the determination of model

parameters.

5. Evolution of Contact Orientations

The fabric tensor is manifested in the anisotropic elastic
responses in the macroscopic scale. The contact force can
be resolved into the component, " in the contact normal
direction, n;, and 7 in the tangential direction of the
contact plane, r;, along which the maximum shear contact
force applies. In a particular case of the symmetry in the
cross-anisotropic material and the triaxial macroscopic
stresses, the direction of #; coincides with the unit vector,
s so that f; =f"n + f"s;. Thus, Eq. (8) can alternatively

be expressed as:
Oy =Pcdg<f"”i ”j>+pcdg <f’s,. nf> (36)

By taking the average of normal and tangential contact
forces, Eq. (36) becomes,

T R Y Mo

where /" and f" are the overall average magnitude

of normal and tangential contact forces. Note that
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<s;n;>= [ smE@)dQ=0_ Concequently, in this limited
condition, the macroscopic stress tensor can be proportional
to the fabric tensor. Eqs. (4) and (6) allow the explicit
relationship between the macroscopic stress and fabric

tensor from Eq. (37) such that

5-3a
5(3-a)

=pd.f"

Q

~

c o
c 8 o
SHE=2N=)

B

5+a
5(3—-a)

(38)

where 0,(= 011 = 022) and (= 033) denote the radial and
axial stresses in the triaxial stress condition, respectively.
Furthermore, the mean normal stress, p, and the deviator
stress, g, in the triaxial stress condition can be expressed

as,

_4apd,f"
© 56-a) (39

=0a+20', =pcdgf g=0,-0,
3 3 and

Thus, the degree of fabric anisotropy, a, has a unique

relationship with the stress ratio, g/p, as:

__154/p)
12+5(q/ p) (40)

Despite its mathematical simplicity, Eq. (40) hides
some critical points: (i) in general, taking the average of
contact forces, especially in the tangential contact direction,
is not sufficient to describe the directional variation of
the contact force and (ii) Eq. (40) does not allow the
anisotropic state of the fabric in the isotropic stress
condition. With respect to the directional variation of the
contact forces, one can find the enhanced expressions of
the stress-contact force-fabric relationship in Mehrabadi
et al. (1982) and Ouadfel and Rothenburg (2001). To
account for the possible fabric anisotropy in the isotropic
stress condition within the simple format of Eq. (40), we

modify Eq. (40) as a linear equation:
a=a,+a(q/p) 1)

where a is the magnitude of a in the isotropic stress

condition, and ao is, in general, the function of contact



Table 1. Required parameters for the micromechanics modeling

Category Input parameter Relevant formulation
! e el el 51
cfl and an/ ) gknl =C, gfn /f;ef)a
Elasticcontact stiffness
! k= ok
Contact . o
p ep £LeP _ P (8 &,
Stiffness € and %y k' =l CFul fr)
o o Elastic—plastic 2
¢ and &, contact stiffness o —tpwegel gf ’
=°C " -_
4, 7 £f, tan g,
e Initial void ratio
Contact 0
density d Mean diameter of
& particles
4 Initial degree of
Contact 0 fabric anisotropy
orientation
a, Evolution of fabric anisotropy a=a,+a(q/p)

forces and their directional distribution. The parameter,
ai, relates implicitly to the evolution of contact forces as
does the contact force relate to the macroscopic stress in
the simplest case of Eq. (40). Herein, a; is regarded as

a material constant.

6. Conclusions

A micromechanics-based model to simulate the elastic
and elastic-plastic behavior of granular soils is developed.
The model accounts for the fabric anisotropy represented
by the statistical parameter of the spatial distribution of
contact normals, the evolution of fabric anisotropy as a
function of stress ratio, the continuous change of the
co-ordination number relating to the void ratio, and the
elastic and elastic-plastic microscopic contact stiffness.
The microscopic behavior in a single contact point is
thoroughly examined for the various states of contact
geometries, which reveals that regardless of contact geo-
metry the normal contact stiffness can be expressed by
a power function of the normal contact force. The
clastic-plastic contact stiffness is newly derived based on
the experimental data for the metallic materials. The
elastic-plastic contact stiffness can also be expressed by
the power function of the normal contact force as well

as the contact force initiating the yielding of contact

bodies. To quantitatively assess the microscopic model
parameters, the approximate solutions of cross-anisotropic
clastic moduli are derived in terms of the micromechanics
parameters. The possible errors in the approximation are
estimated for the reasonable ranges of the degree of fabric
anisotropy. Without the rigorous formulation to describe
the evolution of fabric anisotropy, a simple linear rela-
tionship between the degree of fabric anisotropy and the
stress ratio is provided.

The elastic and elastic-plastic responses in the micro-
mechanical modeling for the nonlinear deformation are

meticulously investigated in the companion paper.
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