Browse > Article
http://dx.doi.org/10.7843/kgs.2011.27.10.081

The Rheological Characteristics of Wyoming Bentonite: Role of Salinity  

Jeong, Sueng-Won (Korea Institute of Geoscience and Mineral Resources)
Publication Information
Journal of the Korean Geotechnical Society / v.27, no.10, 2011 , pp. 81-92 More about this Journal
Abstract
The rheological properties of Wyoming bentonites are strongly influenced by the size of particles, cation exchangeable capacity, arrangement and morphology of clay mineral. This paper presents the results of rheological investigations on the Wyoming bentonites aqueous dispersions: two types of particle flocculation were considered. For the Wyoming bentonite, 0g/L and 30g/L NaCl equivalent salinity were added in fresh and salt water to examine the rheological behavior. This paper examined the general rheological characteristics, compatibility of rheological models and correlation between soil structure and change in rheological properties of Wyoming bentonite caused by increasing salinity. From flow curves of bentonites hydrated with fresh water and salt water, the observed general flow behavior is very close to shear thinning with yield stress (or ideal Bingham fluid with yield stress and plastic viscosity). However, the change of shear stress at the same shear rate is clear, particularly for lower shear rate. Well-known rheological models are used to fit the data. There is a good agreement between rheological model and data: Carreau, Herschel-Bulkley and power-law for S=0g/L and bilinear, Herschel-Bulkley and power-law for S=30g/L. It may be due to the fact that the internal structural bonding (strong modification of particle-particle interactions from edge-to-edge and/or edge-to-face to face-to-face) in soil matrix is affected from the evolution of rheological properties with different salinities.
Keywords
Plastic viscosity; Rheological characteristics; Rheological model; Salinity; Wyoming bentonite; Yield stress;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Miano, F., and Rabaioli, M. R. (1994), "Rheological scaling of montmorillonite suspensions: the effect of electrolytes and polyelectrolytes", Colloids and Surfaces A: Physicochemical and engineering aspects, Vol.84, pp.229-237.   DOI   ScienceOn
2 Moller, P. C. F., Fall, A. and Bonn, D. (2009), "Origin of apparent viscosity in yield stress fluids below yielding." EPL. Vol.87, 38004- p1-38004-p6.   DOI   ScienceOn
3 Newton, I. (1687), "Philosophiae Naturalis Principia Mathematica", First Ed., London.
4 Norrish, K. (1954), "The swelling of montmorillonite", Disc. Faraday Soc., Vol.18, pp.120-134.   DOI
5 Papanastasiou, T. C. (1987), "Flows of materials with yield", J. Rheol., Vol.31, pp.385-404.   DOI   ScienceOn
6 Jeong, S. W. (2006), Influence of physico-chemical characteristics of fine-grained sediments on their rheological behavior, PhD Thesis, Laval University, Quebec, Canada.
7 Jeong, S. W., Locat, J., and Leroueil, S. (2004), "A preliminary analysis of the rheological transformation due to water infiltration as a mechanism for high mobility of submarine mass movements", 57th Canadian Geotechnical Conference, Quebec, Session 7G, pp.15-22
8 Jeong, S. W., Leroueil, S. and Locat, J. (2009), "Applicability of power law for describing the rheology of soils of different origins and characteristics", Can. Geotech. J., Vol.46, pp.1011-1023.   DOI   ScienceOn
9 Jeong, S. W., Locat, J., Leroueil, S., and Malet, J.-P. (2010), "Rheological properties of fine-grained sediments: the roles of texture and mineralogy", Can. Geotech. J., Vol.47, pp.1085-1100.   DOI   ScienceOn
10 Jeong, S. W. (2010), "Grain size dependent rheology on the mobility of debris flows", Geosciences J., Vol.14, pp.359-369.   DOI   ScienceOn
11 Barnes, H. A. (1999), "The yield stress-a review or '$\pi\alpha\nu\tau$ $\rho\varepsilon\prime$'- everything flows?", J. Non-Newtonian Fluid Mechanics, Vol.81, pp.133-178.   DOI   ScienceOn
12 Benna, M., Kbir-Ariguib, N., Magnin, A., and Bergaya, F. (1999), "Effect of pH on rheological properties of purified sodium bentonite suspensions", J. Colloid Interface Sci., 218, 442-455.   DOI   ScienceOn
13 Boivin, P., Bardou, E., and Pfeifer, H. R. (2004), Role and behaviour of clay minerals in alpine debris flows, Eos Trans. AGU, 85, Fall Meet. Suppl., Abstract, H43G-03.
14 Boger, D. V. (1977), "Demonstration of upper and lower Newtonian fluid behaviour in a pseudoplastic fluid", Nature, 265, 126-128.   DOI
15 Perret, D., Locat, J., and Martignoni, P. (1996), "Thixotropic behavior during shear of a fine-grained mud from Eastern Canada", Eng. Geol., Vol.43, pp.31-44.   DOI   ScienceOn
16 Petrov, R. J., and Rowe, R. K. (1997), "Geosynthetic clay liner (GCL) - chemical compatibility by hydraulic conductivity testing and factors impacting its performance", Can. Geotech. J., Vol.34, pp.863-885.   DOI
17 Terzaghi, K., Peck, R. B., and Mesri, G. (1996), Soil mechanics in engineering practice, 3rd edition. John Wiley & Sons, Inc., New York.
18 Torrance, J. K. (1987), "Shear resistance of remoulded soils by viscometric and fall-cone methods: a comparison for the Canadian sensitive marine clays", Can. Geotech. J., Vol.24, pp.318-322.   DOI   ScienceOn
19 Van Olphen, H. (1963), An introduction to clay colloid chemistry, John Wiley & Sons Inc., New York.
20 Van Olphen, H. (1964), "Internal mutual flocculation in clay suspension", J. Colloid Science, Vol.19, pp.313-322.   DOI   ScienceOn
21 Lambe, T. W., and Whitman, R. V. (1979), Soil Mechanics, SI Version, John Wiley & Sons.
22 Jeong, S. W., Locat, J., and Leroueil, S. (2011), "The effects of salinity and shear history on the rheological characteristics of illite-rich and Na-montmorillonite-rich clays", Submitted to Clays and clay mineral (under review).
23 Khaldoun, A., Moller, P., Fall, A., Wegdam, G., De Leeuw, B., Meheust, Y., Fossum J. O., and Bonn, D. (2009), "Quick clay and landslides of clayey soils", Phys. Rev. Lett., Vol.103, 188301.   DOI   ScienceOn
24 Lagaly, G. (1989), "Principles of flow of kaolin and bentonite dispersions", Appl. Clay Sci., Vol.4, pp.105-123.   DOI   ScienceOn
25 Leroueil, S., Tavenas F., and LeBihan, J. P. (1983), "Propriétés caractéristiques des argiles de l'est du Canada", Can. Geotech. J., Vol.20, pp.681-705.   DOI
26 Churchman, G. J., Askary, M., Peter, P., Wright, M., Raven, M. D., and Self, P. G. (2002), "Geotechnical properties indicating environmental uses for an unusual Australian bentonite", Appl. Clay Sci., Vol.20, pp.199-209.   DOI   ScienceOn
27 Collyer, A. A. (1973), "Time independent fluids", Phys. Education, Vol.8, No.5, pp.333-338.   DOI   ScienceOn
28 Coussot, P., Nguyen, G. D., Huynh, H. T., and Bonn, D. (2002), "Viscosity bifurcation in thixotropic, yielding fluids", J. Rheol., Vol.46, pp.573-589.   DOI   ScienceOn
29 Coussot, P., and Piau, J.-M. (1994), "On the behavior of fine mud suspensions", Rheol. Acta., Vol.33, pp.175-184.   DOI   ScienceOn
30 노진환 (2002), "국내산 벤토나이트에 대한 응용광물학적 특성 평가(I): 광물 조성 및 특징과 양이온 교환특성과의 연계성", 한국광물학회지, 제15권 제4호, pp.329-344.
31 정승원 (2011), "세립토 위주의 토석류에 관한 유변학적 모델: 입자크기 효과", 한국지반공학회 논문집, 제27권 제6호, pp.49-61.
32 Luckham, P. F., and Rossi, S. (1999), "The colloidal and rheological properties of bentonite suspensions", Adv. Colloid Interface Sci., Vol.82, pp.43-92.   DOI   ScienceOn
33 Locat, J., and Demers, D. (1988), "Viscosity, yield stress, remoulded strength, and liquidity index relationships for sensitive clays", Can. Geotech. J., Vol.25, pp.709-806.
34 Locat, J. (1997), "Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime", Proc. 1stInt. Conf. on Debris-Flow Hazards Mitigation, San Francisco, ASCE, New York, pp.260-269.
35 Locat, J., Lee, H. J., Locat, P. and Imran, J. (2004), "Numerical analysis of the mobility of the Palos Verdes debris avalanche, California, and its implication for the generation of tsunamis", Mar. Geol., Vol.203, pp.269-280.   DOI   ScienceOn
36 Malet, J. P., Remaître, A., Maquaire, O., Ancey, C., and Locat, J. (2003), "Flow susceptibility of heterogeneous marly formations. Implications for torrent hazard control in the Barcelonnette basin (Alpes-de-Haute-Provence, France)", In Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation, Rickenmann, D. and Chen, C. L. (eds.), Millpress, Rotterdam, pp.351-362.
37 Imran, J., Parker, G., Locat, J., and Lee, H. (2001), "1D numerical model of muddy subaqueous and subaerial debris flows", J. Hydr. Eng., Vol.127, pp.959-968.   DOI
38 Garcia-Garcia, S., Jonsson, M., and Wold, S. (2006), "Temperature effect on the stability of benonite colloids in water", J. Colloid Interface Sci., Vol.298, pp.694-705.   DOI   ScienceOn
39 Gungor, N. (2000), "Effect of the Adsorption of surfactants on the rheology of Na-bentonite slurries", J. Appl. Plymer Sci., Vol.75, pp.107-110.   DOI   ScienceOn
40 Huynh, H. T, Roussel, N., and Coussot, P. (2005). "Aging and free surface flow of a thixotropic fluid", Phys. Fluids, 17, 033101.   DOI   ScienceOn
41 ASTM D 5890, (2002), "Standard test method for swell index of clay mineral component of geosynthetic clay liners", Annual book of ASTM standards, 04.13, pp.232-234.
42 Bardou, E., Bowen, P., Boivin, P., and Banfill, P. (2006), "Impact of small amounts of swelling clays on the physical properties of debris flow-like granular materials: Implications for the study of alpine debris flow", Earth surface processes and landforms, Vol.32, pp.698-710.