본 연구에서는 광양항의 장래 컨테이너 물동량 및 교통량을 일변량 시계열모형을 통해 예측하고, 컨테이너 선박교통량을 산출하였다. 광양항의 물돌량과 입항 척당 물동량의 시계열 모형은 모두 추세와 계절적 변동이 있는 Winters 가법 모형으로 최적합 되었다. 광양항의 컨테이너 물동량은 2007년과 비교하여 2011년과 2015년에 각각 7.4%, 16.2% 가량 증가하여 약 2,756천TEU, 4,470천TEU가 될 것으로 예측되었다. 또한 2011년과 2015년의 컨테이너 입항 척당 평균 물동량은 2007년 대비 약 30.3%, 54.6% 증가하여 각각 675TEU, 801TEU가 될 것으로 예측되었다. 광양항에 대한 컨테이너 선박의 교통량은 2011년과 2015년에 각각 4,078척, 5,921척이 될 것으로 추정되었다.
사회가 고도화되면서 복잡성은 증가하고 예측하기 어려운 리스크도 계속적으로 발생하고 있다. 특히 최근 코로나19 및 러시아-우크라이나 전쟁으로 인한 글로벌 공급망에 대한 리스크도 한 예라 할 수 있다. 공급망에 대한 리스크는 항만 물동량에 영향을 주어 항만운영과 항만산업 발전에 지장을 주게 된다. 본 연구는 글로벌 공급망 리스크가 항만 물동량, 특히 컨테이너 물동량에 주는 영향을 알아보기 위해 부산항 사례를 중심으로 글로벌 공급망 압력지수(GSCPI), 상하이 컨테이너 운임지수(SCFI), 산업생산지수, 소매 판매지수 등의 변수들이 물동량에 주는 영향에 대해 벡터자기회귀(VAR) 모형을 활용하여 실증분석을 시행하였다. 분석 결과, GSCPI의 상승은 단기적으로 부산항 물동량의 감소를 유발하지만, 일정 시점 후에는 물동량 증가요인으로 작용하는 파동의 형태로 영향을 주는 것으로 분석되었는데, 이는 비교군인 상하이항에서도 동일하게 나타났다. 다만 LA/LB항에서는 GSCPI가 물동량에 거의 영향을 주지 않는 것으로 나타났다. 또한 산업 생산지수와 소매판매지수는 부산항 물동량에 통계적으로 유의한 영향을 미치지 않는 것으로 나타났으며, SCFI의 경우 GSCPI가 물동량에 미치는 영향과 거의 유사한 것으로 분석되었다. 본 연구의 결과는 공급망 리스크가 점차 증가하고 있는 상황에서 리스크가 항만 물동량에 어떠한 형태로 영향을 미치는지를 밝혀 향후 공급망 리스크에 대비한 항만운영 정책 수립에 많은 시사점을 제공하고 있다.
광양항의 컨테이너 물동량은 인천항이나 평택 당진항에 비해 더딘 증가를 보이고 있으며, 부단위당 부가가치가 낮고 중국시장을 제대로 활용하지 못하고 있다. 광양항은 다른 두 항에 비해 환율계수와 경기계수가 크게 낮아 환율변동과 경기변동에 가장 작은 영향을 받게 되고 그에 따라 경기와 환율의 긍정적 변동을 이용하는데 가장 서투른 항만임을 보인다. 오차수정방정식을 도출하여 오차수정계수가 광양항에서 가장 작아서 적정 물동량 수준에 이르지 못할 경우 물동량 수준으로 돌아가는데 다른 두 항만에 비해 크게 떨어진다는 것을 밝힌다. 이것은 광양항이 다른 두 항만에 비해 물동량 확보능력이 부족하다는 것과, 물동량 부족이 발생할 경우 그것이 오래 지속될 수 있다는 것을 의미한다. 충격반응함수를 이용하여 경기충격이 광양항에 대해 가장 낮은 반응을 야기하여 경기상승에 따른 물동량 증가가 가장 적을 것이라는 것을 밝힌다. 마지막으로 2012년과 2013년의 물동량을 개입-승법계절 ARIMA 모형을 통해 예측하여 광양항은 2012년과 2012년 전년 대비 2.6%, 3.1% 증가하는데 비해, 인천항 6.8%, 8.1%, 평택 당진항 24.2%, 10.3%가 증가하여, 2012년에는 인천항과 물동량 차이가 거의 없는 수준으로 좁혀지고 2013년에는 비교적 큰 차이로 인천항이 광양항을 앞설 것이라는 것을 보인다. 경제적 또는 경제외적 요인의 변화에 대한 광양항의 적응능력이 타 항만에 비해 떨어지고, 그에 따라 다른 항만에 추월당할 상태에 처하고 있다는 것을 밝힌다.
예측의 정확성은 비용의 감소나 고객서비스의 제고를 위해 필수적으로 선행되어야 하기에 현재까지도 많은 연구자들에 의해 연구되고 있는 분야이다. 본 연구에서는 국내 항만의 컨테이너 물동량 예측에 있어 대표적인 비선형예측모형인 인공신경망모형과 ARIMA모형에 대한 비교연구를 수행하는데 목적을 두었고, 컨테이너 물동량 예측력 제고를 위해 ARIMA모형과 인공신경망(ANN)모형을 결합한 하이브리드모형을 사용해 다른 모형들과 예측성과를 비교하고자 한다. 특히 인공신경망모형의 네트워크 구조 설계에 부분에 있어 방대하며 복잡한 탐색공간에서도 전역해 찾기에 효과적인 기법으로 알려져 있는 유전알고리즘을 사용함과 동시에 인공신경망의 대표적인 모형으로 알려진 다층 퍼셉트론(MLP)뿐만 아니라 시간지연네트워크(TDNN)를 사용해 예측성과를 비교하였다. 그 결과 ANN모형과 하이브리드모형이 ARIMA모형보다 더 뛰어난 예측성과를 보이는 것으로 나왔다.
본고는 2012년까지의 해상물동량을 예측하고 항만물류정책적 방안을 제시하는데 목적을 두었다. ARIMA 모형을 통한 분석을 위해서 1차적으로 모형을 식별하였다. 자기상관도표를 통해 물동량의 자기상관함수값이 대단히 느린 속도로 0에 접근하여 안정적이지 못한 것으로 나타났으나, 자기상관계수가 1차차분 후 시차1 이후 급격한 감소를 보임에 따라 AR(1) 과정을 갖는다는 것을 알 수 있었다. 또한 자료들이 강한 계절성을 갖는 것으로 나타남에 따라 식별단계를 거쳐 승법계절 ARIMA모형인 ARIMA(1,1,1)(1,0,1)s 모형을 도입하였다. 다음 단계로 2007년부터 2012년까지의 사전적 예측치를 살펴보았다. 그 결과 2007년 6억9,631만톤, 2008년 7억2,180만톤, 2009년 7억4,807만톤, 2010년 7억7,520만톤, 2011년 8억320만톤, 2012년 8억3,212만톤으로 매우 느리게 증가하였다. 2006년 대비 증가율로 보면 2007년 1.42%, 2009년 8.96%, 2012년 21.21%로 나타났다. 구체적으로 입하량의 경우는 2007년 0.86%에서 2012년 16.1%로 증가하며, 출하량의 경우는 2007년 2.76%에서 2012년 33.2%로 증가함을 알 수 있었다. 그리고 항만물동량 증가추세 둔화현상의 극복과 항만의 로컬 화물 창출 및 부가가치 창출 기능을 위해서 제조업의 공동화 억제, 환적화물의 지속적이고 적극적인 유치, 항만배후물류단지의 조기 개발과 다국적 기업의 유치, 한 중 물류협력 강화, 복합운송체계의 구축을 제시하였다.
항만의 주요 정책 및 향후 운영계획 수립 시 정확한 물동량 예측에 관한 연구는 매우 중요하며 이러한 중요성으로 인해 관련 연구가 활발히 수행되고 있다. 본 논문에서는 국내 최대 석탄 및 철광석 처리 항만인 광양항을 대상으로 단계적 회귀분석과 인공신경망모형을 활용하여 모형간 예측력을 비교하였다. 2009년 1월부터 2019년 1월까지 총 121개월의 월별자료를 활용하였으며 석탄 및 철광석 물동량에 영향을 주는 요인을 선정하여 공급관련요인과 시장·경제관련요인으로 분류하였다. 단계적 회귀분석 결과, 광양항 석탄 물동량 예측모형의 경우, 입항선박 톤수, 석탄가격 및 대미환율이 최종변수로 선정되었고 철광석 물동량 예측모형의 경우, 입항선박 톤수, 철광석가격이 최종변수로 선정되었다. 인공신경망모형의 경우, 모델 성능에 영향을 미치는 다양한 Hyper-parameters를 조정하며 최적 모델을 선정하는 시행착오법을 사용하였다. 분석결과 인공신경망모형이 단계적 회귀분석에 비해 우수한 예측성능을 나타내었으며 예측 모형별 예측값과 실측값을 그래프 상 비교 시에도 인공신경망모형이 단계적 회귀분석에 비해 고·저점을 유사하게 나타냈다.
본 연구는 시스템 다이내믹스법을 이용하여 인천항 배후단지가 인천항 컨테이너 물동량에 미치는 영향을 분석하는 것을 연구의 목적으로 하였다. 시뮬레이션을 위해 사용된 변수는 환율(달러), 경상수지, 자본수지, 일본 교역량, 중국 교역량, 수출 단가지수, 수입 단가지수, 인천항 교역액 등의 거시 경제지표이며, 추가로 인천 항만배후 단지가 인천항 물동량에 어떠한 영향을 주는지를 검증하기 위하여 현인천항만 배후단지 입주기업의 매출액, 컨테이너물동량, 임대료, 종업원 수를 이용하여 민감도 분석을 시행하였다. 예측된 결과값의 정확도를 측정하기 위해 절대평균오차비율(MAPE) 검증을 실시하였으며, 10% 이내의 결과값을 얻어 매우 정확한 예측으로 판정되었다. 민감도 분석결과, 항만 배후단지 입주기업의 물동량이 인천항 컨테이너 물동량 증가에 가장 많이 기여하는 것으로 나타났으며, 임대료가 높을수록 물동량이 줄어드는 것으로 분석되었다.
컨테이너항만의 물동량 예측은 항만의 계발 및 운영계획을 위해 매우 중요한 과정이다. 일반적으로 회귀분석, ARIMA 등의 통계적 방법론을 통해 많은 예측이 이뤄져왔다. 최근의 연구에서는 인공 신경망(ANN)기법을 통한 예측이 이뤄지고 있으며 기존의 선형적인 기법을 대신하고 있다. 본 연구에서는 선형모델과 비선형모델에 강점이 있는 ARIMA와 신경망 모델을 결합해 보다 효과적인 예측 모델을 개발하고자 한다. 실제 항만의 과거 자료를 통해 모델의 적합성을 측정하였고 항만의 특성에 따라 모형의 적합성이 다양하게 나타났다.
컨테이너항만의 물동량 예측은 항만의 개발 및 운영계획을 위해 매우 중요한 과정이다. 일반적으로 회귀분석, ARIMA모형 등의 통계적 방법론을 통해 많은 예측이 이뤄져왔다. 최근의 연구에서는 인공 신경망(ANN)기법을 통한 예측이 이뤄지고 있으며 기존의 선형적인 기법을 대신하고 있다. 본 연구에서는 선형모형과 비선형모형에 강점이 있는 ARIMA모형과 신경망모형을 결합해 보다 효과적인 예측 모형을 개발하고자 한다. 실제 항만의 과거 자료를 통해 모델의 적합성을 측정하였고 항만의 특성에 따라 모형의 적합성이 다양하게 나타났다.
서산 대산항은 국내 무역항 중 물동량 6위의 항만이며, 항만의 지속적인 성장을 위해 항만 인프라 확장, 정기항로 개발, 해외 마케팅, 항만인센티브제 등을 추진하고 있다. 또한, 중국 위해항으로 운항하는 카페리 정기노선개설을 계획 중인 상황으로 이에 대한 수요분석이 필요한 시점이다. 본 연구는 서산 대산항의 대 중국(위해시)카페리 항로 개설 타당성에 대해 분석하여 효율적인 의사결정을 위한 기초자료로 활용할 수 있는 연구제공을 목표로 한다. 현재 국내에서 중국으로 운항하는 카페리 항로는 인천항, 평택·당진항, 군산항에 개설되어 있으며, 연도별로 약간의 등락은 있으나 증가하는 추세에 있다. 서산 대산항에서 위해시로 가는 카페리 항로가 개설될 시 창출 가능한 물동량을 분석하기 위해서 서산 대산항이 위치한 충청남도 지역으로부터 국내 각 항이 위치한 지역으로의 국내 화물물동량을 분석한 후, 국내 각 항에서 위해시로 카페리를 통해 운송되는 물동량을 파악하여 서산 대산항에서 중국 위해항으로 운송될 수 있는 카페리 물동량을 예측하였다. 그 결과, 2020년 기준 여객 약 76,000명, 화물 약 5만톤 정도의 물동량 창출이 가능할 것으로 분석되었다. 또한, 정책제언으로 카페리 여객 활성화를 위한 전략, 카페리 화물물동량 확보를 위한 전략 및 항만인센티브제도의 도입 방향을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.