• Title/Summary/Keyword: 항균 분석

Search Result 979, Processing Time 0.031 seconds

Quality Characteristics of Fried Fish Paste of Alaska Pollack Meat Paste Added with Propolis (프로폴리스 첨가 명태 연육 튀김어묵의 품질 특성)

  • Kim, Gwang-Woo;Kim, Ga-Hyeon;Kim, Jeong-Sik;An, Hyo-Yeong;Hu, Gil-Won;Park, In-Suk;Kim, Ok-Seon;Cho, Soon-Yeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.485-489
    • /
    • 2008
  • In this study, the fried fish paste was prepared from Alaska pollack meat paste added with propolis. The quality characteristics were analyzed by peroxide value, gel strength, color, viable cell count and sensory evaluation. The fried fish paste product had lower peroxide value and viable cell count after frying compared to the one without propolis. The antioxidant and antispoiling ability of propolis in fried fish paste increased with content of propolis. Gel strength increased with increasing addition of propolis. L-value decreased but a-value and b-value increased with the addition of propolis. In sensory evaluation, 0.17% propolis had the best score in overall acceptability. These results indicate that the fish paste could be prepared by adding the propolis for high quality and functionality. Consequently, propolis can be applied as a food preservative or additive.

High Prevalence and Genotypic Characterization of Metallo-β-Lactamase (MBL)-Producing Acinetobacter spp. Isolates Disseminated in a Korean Hospital (국내 대학병원에서 분리된 Metallo-β-Lactamase (MBL) 생성 Acinetobacter spp. 분리주의 높은 출현율과 유전형 특징)

  • Yum, Jong Hwa
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.444-452
    • /
    • 2019
  • Carbapenem resistance, mediated by the major acquired metallo-β-lactamase (MBL) genes, has been increasingly reported, particularly for clinical isolates of Acinetobacter spp. Of the 191 nonduplicate clinical isolates of the carbapenem-nonsusceptible Acinetobacter spp. evaluated, 125 isolates (65.4%) were positive for the modified imipenem or meropenem-Hodge test, and 49 isolates (25.7%) were positive for the imipenem-EDTA+SMA double disk synergy test (DDS). PCR and sequencing of the blaVIM-2-allele and blaIMP-1-allele showed that 29 A. baumannii isolates and 1 A. calcoaceticus isolate had blaVIM-2, whereas 16 A. baumannii isolates and 2 A. calcoaceticus isolates had blaIMP-6; 1 isolate of the A. genomospecies 3 had blaVIM-2 and blaAIM-1. All the above MBL genes belong to class 1 integron. The size of class 1 integron encompassing blaVIM-2 or blaIMP-6 ranges from 2.8 kb to 3.2 kb in clinical isolates of A. baumannii, and 3.2 kb to 3.5 kb in clinical isolates of A. genomospecies 3. blaVIM-2 was most often located first or second in the class 1 integron, and these integrons often included aacA4. Due to dispersion of the MBL-producing Acinetobacter spp. as well as integron, which may encompass various resistance genes, there is an expectation for the increase of multidrug resistant Gram-negative bacteria, including resistance of carbapenems such as imipenem or meropenem. Hence, the development of new antimicrobial agents for treating severe Acinetobacter spp. infections is needed.

Antibacterial effect of bee venom against Gram-positive and negative bacteria isolated from mastitis in dairy cattle (봉독의 젖소 유방염 유래 그람 양성 및 음성 세균별 항균효과 분석)

  • Jung, Sukhan;Oh, Sang-Ik;Lee, Han-Gyu;Jung, Young-Hun;Hur, Tai-Young;Han, Sangmi;Baek, Kui-Jeong;Cho, Ara
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.3
    • /
    • pp.169-174
    • /
    • 2021
  • Mastitis is an inflammatory condition of the mammary gland, most often caused by bacterial infections, resulting in significant economic losses to the dairy industry. Antimicrobial resistance has been of great concern because of the extensive clinical use of antibiotics. For this reason, the development of new compounds as an alternative treatment to bovine mastitis is needed. Bee venom has been widely used as an oriental treatment for several inflammatory diseases and bacterial infections. The aim of the present study was to evaluate the antimicrobial activity of bee venom on bacteria isolated from bovine mastitis. A total of 107 isolates from bovine mastitic milk samples collected in 2019 and 2020 in Jeonbuk province. All bacterial isolates were tested for susceptibility to bee venom of the honey bee (Apis mellifera). In order to obtain comprehensive antibacterial activities of the bee venom, we measured the minimal inhibitory concentration (MIC) of the bee venom against bacterial strains. Bee venom showed significant inhibition of bacterial growth of Gram-negative bacteria Citrobacter spp., Escherchia coli, Klebsiella spp., Pseudomonas spp., Serratia spp. and Raoultella with MIC values of 96, 81, 72, 230, and 85 ㎍/mL, respectively, and Gram-positive bacterial Enterococcus spp., Staphylococcus spp. and Streptococcus spp. with MIC values of 29, 21 and 16 ㎍/mL, respectively. The results indicated that the MIC values were different depending on the bacterial strains, and those of Gram-positive bacteria were lower than those of Gram-negative bacteria for bee venom. These findings suggested that bee venom could be an effective antimicrobial treatment for bovine mastitis; however, further research is necessary to evaluate the mechanism underlying the antimicrobial action, its effectiveness/safety in vivo and effective application for therapeutic use.

Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection (색 변화를 활용한 중금속 이온 검출에 특화된 멤브레인 기반 센서의 최근 연구 개발 동향)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.87-100
    • /
    • 2021
  • With a striking increase in the level of contamination and subsequent degradations in the environment, detection and monitoring of contaminants in various sites has become a crucial mission in current society. In this review, we have summarized the current research areas in membrane-based colorimetric sensors for trace detection of various molecules. The researches covered in this summary utilize membranes composed of cellulose fibers as sensing platforms and metal nanoparticles or fluorophores as optical reagents. Displaying decent or excellent sensitivity, most of the developed sensors achieve a significant selectivity in the presence of interfering ions. The physical and chemical properties of cellulose membrane platforms can be customized by changing the synthesis method or type of optical reagent used, allowing a wide range of applications possible. Membrane-based sensors are also portable and have great mechanical properties, which enable on-site detection of contaminants. With such superior qualities, membrane-based sensors examined in the researches were used for versatile purposes including quantification of heavy metals in drinking water, trace detection of toxic antibiotics and heavy metals in environmental water samples. Some of the sensors exhibited additional features like antimicrobial ability and recyclability. Lastly, while most of the sensors aimed for a detection enabled by naked eyes through rapid colour change, many of them investigated further detection methods like fluorescence, UV-vis spectroscopy, and RGB colour intensity.

Current Status and Prospects for the Hemp Bioindustry (대마 생물산업의 현황과 전망)

  • Sohn, Ho-Yong;Kim, Mun-Nyeon;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.677-685
    • /
    • 2021
  • Cannabis sativa L. belongs to the Cannabaceae family and is an annual herbaceous flowing plant. The plants can be classified into narcotic marijuana and nonnarcotic hemp. Different parts of C. sativa L. have been used as food, medicine, cosmetics, fiber and textile. However, the use of leaf, flower, and seed of C. sativa L was forbidden in Korea in January 1977 as a result of the Cannabis Control Act due to the narcotic properties. The plant's mature stems have limited uses for the production of fiber and sheets. Recently, various cannabinoids, terpenes and essential fatty acids were identified from C. sativa L., and their safety and useful bio-activities, such as neuroprotective, anti-inflammation, antithrombosis, antiepileptic, and antimicrobial activities, and the relief of pain, have been highlighted. Furthermore, the process of reduction of tetrahydrocannabinol, a representative narcotic compound, and the isolation of cannabidiol, a nonnarcotic active compound in C. sativa L., have been determined. These findings resulted in the legalization of C. sativa L. in Korea for medical use in December 2018 and the exclusion of C. sativa L. from the narcotic list of the UN Commission on Narcotics Drugs (UNCND) in December 2020. Therefore, developments of various high-value added products have commenced worldwide. Additionally, in 2021, the Korean government deregulated special zones based on hemp. In this study, the current status and the prospect of the hemp industry, as well as essential techniques for developing new hemp products, are provided for the activation of the Korea Green-Rush.

Effects of Scutellaria scordifolia Fisch. ex Schrank Extracts on Biofilm Formation and the Activities of Klebsiella pneumoniae (Klebsiella pneumoniae균의 바이오 필름 형성과 활성에 대한 병두황진 추출물의 효과)

  • Yook, Keun-Dol;Ha, Nayoung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.438-443
    • /
    • 2018
  • The emergence of biofilms have generated urgent alarm in clinical and medicine manufacturing fields engaged in the search for novel antimicrobials from ethno-medicinal plants. The National Institutes of Health (NIH) has estimated that 70% of all microbial infections in the world are associated with biofilms. In addition, the emergence of strains resistant to conventional antibiotics has become a serious threat to global public health. Therefore, finding alternative medicines is a major issue in the field of integrative medicine. In this study, four different herb extracts were screened for biofilm formation and the activities of Klebsiella pneumoniae. Of them, Scutellaria scordifolia Fisch. ex Schrank extracts had inhibitory effects on bacterial growth and biofilm formation. The Scutellaia scordifolia Fisch. ex Schrank extracts did not cause any cytotoxicity to L929 cells. The growth of K. pneumoniae was inhibited compared to other comparators in the experimental group containing Scutellaia scordifolia Fisch. ex Schrank. In a group of experiments with plant extracts, a maximum of 60 times the level of living bacteria was confirmed compared to the controls without the addition of the Scutellaia scordifolia Fisch. ex Schrank extracts. In a group of experiments with a significantly lower level of fluorescence extraction, differential interference contrast imaging showed that the number of K. pneumonae was reduced. These results suggest that extracts of this plant be applied as antimicrobial agents against K. pneumoniae, particularly in biofilm forms.

The Effect of Fermented Extracts of Korean Dendropanax Morbifera Levéille on Hair Growth (황칠나무 발효 추출물의 육모효과)

  • Park, Tae-Hee;Park, Se-Ho;Lee, Jae-Yeul;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.455-460
    • /
    • 2019
  • In previous studies, we confirmed the effective antimicrobial activity of fermented Dendropanax morbifera leaf/branch extracts with Lactobacillus plantarum ilchiwhangchil 1785 and Lactobacillus plantarum ilchiwhangchil 2020. In this study, we investigated the hair growth effect of D. morbifera leaf/branch extracts fermented with L. plantarum ilchiwhangchil 1785 and L. plantarum ilchiwhangchil 2020 on human hair dermal papilla cells. The growth rate of human hair dermal papilla cells treated with fermented extracts in the range of 1 to $10{\mu}g/ml$ significantly increased in a concentration-dependent manner, without increasing cell death. Double staining studies showed that the growth of cells treated with fermented D. morbifera leaf/branch extracts was more active than that of control cells. Moreover, the cells treated with the fermented D. morbifera leaf/branch extracts exhibited a 18.84% and 23.31% increase in cell mobility, respectively, as compared with that of the untreated cells. High-performance liquid chromatography (HPLC) was used to determine the active agents responsible for hair growth. The results showed that the content of ${\beta}$-sitosterol, which is known to affect hair growth, increased about 10 times in the fermentation process of D. morbifera leaf/branch extracts. Taken together, the findings confirm that fermented Dendropanax morbifera leaf/branch extracts promote hair growth.

Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans (오존화 올리브 오일의 세균과 Candida alicans에 대한 항미생물 활성 효과)

  • Chung, Kyung Tae;Kim, Byoung Woo
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • Ozone is a gaseous molecule able to kill microorganisms, such as yeast, fungi, bacteria, and protozoa. However, ozone gas is unstable and cannot be used easily. In order to utilize ozone properly and efficiently, plant oil can be employed. Ozone reacts with C-C double bonds of fatty acids, converting to ozonized oil. In this reaction, ozonide is produced within fatty acids and the resulting ozonized oil has various biological functions. In this study, we showed that ozonized oil has antimicrobial activity against fungi and bacteria. To test the antimicrobial activity of ozonized oil, we produced ozonized olive oil. Ozonized olive oil was applied to Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Antimicrobial activity was assayed using the disk diffusion method following the National Committee for Clinical Laboratory Standards. Minimal inhibitory concentrations (MIC) were 0.25 mg for S. aureus, 0.5 mg for S. epidermidis, 3.0 mg for P. aeruginosa, and 1.0 mg for E. coli. Gram positive bacteria were more susceptible than Gram negative bacteria. We compared growth inhibition zones against S. aureus and MRSA, showing that the ozonized olive oil was more effective on MRSA than S. aureus. Furthermore, the ozonized olive oil killed C. albicans within an hour. These data suggested that ozonized olive oil could be an alternative drug for MRSA infection and could be utilized as a potent antimicrobial and antifungal substance.

Development of Skin Health Promoting Materials Using Leuconostoc mesenteroides (중금속 흡착능 Leuconostoc mesenteroides CJNU 0705 균주를 활용한 피부 건강기능성 소재 개발)

  • Han, Min-Hui;Moon, Gi-Seong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.455-462
    • /
    • 2020
  • Leuconostoc mesenteroides CJNU 0705 was isolated from a breast milk sample and identified by 16S rRNA gene sequencing and confirmed by its ability to produce dextran from tryptic soy agar plates supplemented with 2% sucrose. This strain can absorb various heavy metals including lead (Pb) and cadmium (Cd) which are both found in fine dust and have been shown to be harmful to human skin. In addition, Leu. mesenteroides CJNU 0705 has demonstrated antimicrobial activity against Propionibacterium acnes, the primary causative agent of acne. Given these traits it was natural to evaluate the use of this strain in the fermentation of several natural extracts from green tea, carrot, annual wormwood, parsley, broccoli, and corn silk, which are known to improve skin health, to see if it could increase their dextran content when supplemented with no sucrose, 2% sucrose, or 2% sucrose and 3% yeast extract. The extracts supplemented with both yeast and sucrose were found to produce the most dextran, which was confirmed by the scanning electron microscope (SEM) images. These results suggest that Leu. mesenteroides CJNU 0705 and its fermented natural extracts could be used as functional materials for improving human skin health.

Preparation and Characterization of UV-cured Polyurethane Acrylate/ZnO Nanocomposite Films (자외선 경화형 폴리우레탄 아크릴레이트/ZnO 나노콤포지트 필름의 제조 및 특성 분석)

  • Jeon, Gwonyoung;Park, Su-il;Seo, Jongchul;Seo, Kwangwon;Han, Haksoo;You, Young Chul
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.610-616
    • /
    • 2011
  • A series of polyurethane acrylate/ZnO (PUA/ZnO) nanocomposite films with different ZnO contents were successfully prepared via a UV-curing system. The synthesis and physical properties including morphological structure, thermal properties, barrier properties and optical properties, and antimicrobial properties were investigated as a function of ZnO concentration. FTIR and SEM results showed that these PUA/ZnO nanocomposite films did not have a strong interaction between PUA and ZnO, which may lead to no increase in thermal stability. By incorporating ZnO nanoparticles, the UV blocking and antibacterial properties increased as the content of ZnO increased. Specially, the oxygen permeability in composite films changed from $2005cc/m^2/day$ to $150cc/m^2/day$ by adding the ZnO nanoparticle, which indicates that the PUA/ZnO nanocomposite films can be applied as good barrier packaging materials. Physical properties of the UV-cured PUA/ZnO nanocomposite film are strongly dependent upon the dispersion state of ZnO nanoparticles and their morphology in the films.