Browse > Article
http://dx.doi.org/10.15324/kjcls.2019.51.4.444

High Prevalence and Genotypic Characterization of Metallo-β-Lactamase (MBL)-Producing Acinetobacter spp. Isolates Disseminated in a Korean Hospital  

Yum, Jong Hwa (Department of Clinical Laboratory Science, Dongeui University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.51, no.4, 2019 , pp. 444-452 More about this Journal
Abstract
Carbapenem resistance, mediated by the major acquired metallo-β-lactamase (MBL) genes, has been increasingly reported, particularly for clinical isolates of Acinetobacter spp. Of the 191 nonduplicate clinical isolates of the carbapenem-nonsusceptible Acinetobacter spp. evaluated, 125 isolates (65.4%) were positive for the modified imipenem or meropenem-Hodge test, and 49 isolates (25.7%) were positive for the imipenem-EDTA+SMA double disk synergy test (DDS). PCR and sequencing of the blaVIM-2-allele and blaIMP-1-allele showed that 29 A. baumannii isolates and 1 A. calcoaceticus isolate had blaVIM-2, whereas 16 A. baumannii isolates and 2 A. calcoaceticus isolates had blaIMP-6; 1 isolate of the A. genomospecies 3 had blaVIM-2 and blaAIM-1. All the above MBL genes belong to class 1 integron. The size of class 1 integron encompassing blaVIM-2 or blaIMP-6 ranges from 2.8 kb to 3.2 kb in clinical isolates of A. baumannii, and 3.2 kb to 3.5 kb in clinical isolates of A. genomospecies 3. blaVIM-2 was most often located first or second in the class 1 integron, and these integrons often included aacA4. Due to dispersion of the MBL-producing Acinetobacter spp. as well as integron, which may encompass various resistance genes, there is an expectation for the increase of multidrug resistant Gram-negative bacteria, including resistance of carbapenems such as imipenem or meropenem. Hence, the development of new antimicrobial agents for treating severe Acinetobacter spp. infections is needed.
Keywords
Acinetobacter spp.; $bla_{IMP-6}$; $bla_{VIM-2}$; Carbapenem resistant; $Metallo-{\beta}-lactamase$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP. First Nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-${\beta}$-lactamase (VIM-2) in the United States. Antimicrob. Agents Chemother. 2005;49:3538-3540. https://doi.org/10.1128/AAC.49.8.3538-3540.2005.   DOI
2 Kim I-S, Lee NY, Ki C-S, Oh WS, Peck KR, Song J-H. Increasing prevalence of imipenem-resistant Pseudomonas aeruginosa and molecular typing of metallo-${\beta}$-lactamase producers in a Korean Hospital. Microb. Drug Resistance. 2005;11:355-3558. https://doi.org/10.1089/mdr.2005.11.355.   DOI
3 Pitout JD, Chow BL, Gregson DB, Laupland KB, Elsayed S, Church DL. Molecular epidemiology of metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa in the Calgary health region: emergence of VIM-2-producing isolates. J Clin Microbiol. 2007;43:458-61. https://doi.org/10.1128/JCM.01694-06.   DOI
4 Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, et al. Novel acquired metallo-${\beta}$-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother. 2005;49:4485-4491. https://doi.org/10.1128/AAC.49.11.4485-4491.2005.   DOI
5 Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18:306-325. https://doi.org/10.1128/CMR.18.2.306-325.2005.   DOI
6 Yong D, Toleman MA, Bell J, Ritchie B, Pratt R, Ryley H, et al. Genetic and biochemical characterization of an acquired subgroup B3 metallo-${\beta}$-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother. 2012;56:6154-6159. https://doi.org/10.1128/AAC.05654-11.   DOI
7 Livermore DM, Woodford N. Carbapenemases: a problem in waiting? Curr Opin Microbiol. 2000;3:489-495.   DOI
8 Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, et al. Molecular characterization of SPM-1, a novel metallo-${\beta}$-lactamase isolated in Latin America: report from the SENTRY antimicrobial programme. J Antimicrob Chemother. 2002;50:673-679. https://doi.org/10.1093/jac/dkf210.   DOI
9 Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-${\beta}$-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 2000;44:891-897. https://doi.org/10.1128/aac.44.4.891-897.2000.   DOI
10 Watanabe JJ, Ko WC, Wu JJ. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1991;45:1343-1348.   DOI
11 Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge test and EDTA-disk synergy tests to screen metallo-${\beta}$-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001;7:88-91.   DOI
12 Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y, et al. VIM and IMP-type metallo-${\beta}$-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis. 2003;9:868-871. https://doi.org/10.3201/eid0907.020753.   DOI
13 Sung JY, Koo SH, Kim S, Kwon GC. Emergence of Acinetobacter pittii harboring New Delhi metallo-beta-lactamase genes in Daejeon, Korea. Ann Lab Med. 2015;35:531-534. https://doi.org/10.3343/alm.2015.35.5.531.   DOI
14 Loffler FE, Sun Q, Li J, Tiedje JM. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol. 2000;66:1369-1374. https://doi.org/10.1128/aem.66.4.1369-1374.2000.   DOI
15 Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge Test and the imipenem-EDTA double disk synergy test for differentiating metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003;41:4623-4629. https://doi.org/10.1128/jcm.41.10.4623-4629.2003.   DOI
16 Riccio ML, Franceschini N, Boschi L, Caravelli B, Cornaglia G, Fontana R, et al. Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother. 2000;44:1229-1235. https://doi.org/10.1128/aac.44.5.1229-1235.2000.   DOI
17 Levesque C, Piche L, Chantal L, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother. 1995;39:185-191. https://doi.org/10.1128/aac.39.1.185.   DOI
18 Lee K, Kim CK, Yong D, Jeong SH, Yum JH, Seo YH. et al. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J Microbiol Methods. 2010;83:149-152. https://doi.org/10.1016/j.mimet.2010.08.010.   DOI
19 Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR typing of genetic determinants for metallo-${\beta}$-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003;43:458-461. https://doi.org/10.1128/jcm.41.12.5407-5413.2003.   DOI
20 Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility tests; approved standards M2-A8, 27th ed. Wayne PA: CLSI; 2017.
21 Arakawa Y, Shibata N, Shibayams K, Kurokawa H, Yagi T, Fugiwara H, et al. Convenient test for screening metallo-betalactamase producing gram negative bacteria by using thiol compounds. J Clin Microbiol. 2000;38:40-43.   DOI
22 Lai CC, Chen YS, Lee NY, Tang HJ, Lee SS, Lin CF, et al. Susceptibility rates of clinically important bacteria collected from intensive care units against colistin, carbapenems, and other comparative agents: results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Infect Drug Resist. 2019;12:627-640. https://doi.org/10.2147/IDR.S194482.   DOI
23 Yum JH, Yi K, Lee H, Yong D, Lee K, Kim JM, et al. Molecular characterization of metallo-${\beta}$-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the $bla_{VIM-2}$ gene cassettes. J Antimicrob Chemother. 2002;49:837-840. https://doi.org/10.1093/jac/dkf043.   DOI
24 Yong D, Choi YS, Roh KH, Kim CK, Park YH, Yum JH, et al. Increasing prevalence and diversity of metallo-${\beta}$-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea. Antimicrob Agents Chemother. 2006;50:1884-1886. https://doi.org/10.1128/AAC.50.5.1884-1886.2006.   DOI
25 Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, et al. blaVIM-2 cassette-containing novel integrons in metallo-${\beta}$-lactamaseproducing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in ad Korean hospital. Antimicrob Agents Chemother. 2002;46:1053-1058. https://doi.org/10.1128/aac.46.4.1053-1058.2002.   DOI
26 Fiett J, Baraniak A, Mrowka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, et al. Molecular epidemiology of acquired-metallo-${\beta}$-lactamase-producing bacteria in Poland. Antimicrob. Agents Chemother. 2006;50:880-886. https://doi.org/10.1128/AAC.50.3.880-886.2006.   DOI
27 Toleman MA, Biedenbach D, Bennett DM, Jones RN, Walsh TR. Italian metallo-beta-lactamases: a national problem? report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother. 2005;55:61-70. https://doi.org/10.1093/jac/dkh512.   DOI
28 Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-${\beta}$-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43:1584-1590.   DOI
29 Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin Infect Dis. 2010;51;79-84. http://doi.org/10.1086/653120.   DOI
30 Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6:130. https://doi.org/10.1186/1471-2334-6-130.   DOI
31 Chusri S, Chongsuvivatwong V, Rivera JI, Silpapojakul K, Singkhamanan K, McNeil E, et al. Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrob. Agents Chemother. 2014;58:4172-4179. https://doi.org/10.1128/AAC.02992-14.   DOI
32 Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M. Plasmid-encoded metallo-${\beta}$-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob. Agents Chemother. 2001;45:1343-1348. https://doi.org/10.1128/AAC.45.5.1343-1348.2001.   DOI
33 Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. Dissemination of IMP-6 metallo-${\beta}$-lactamses-producing Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother. 2011;66:2791-2796. https://doi.org/10.1093/jac/dkr381.   DOI
34 Quinteira S, Souse JC, Peixe L. Characterization of In100, a New integron carrying a metallo-beta-lactamase and a carbenicillinase, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005;49:451-453. https://doi.org/10.1128/AAC.49.1.451-453.2005.   DOI
35 Jose G-M, Rosario A-V. Multiresistant Acinetobacter baumannii infections: epidemiology and management. Curr Opin Infect Dis. 2010;23:332-339. https://doi.org/10.1097/QCO.0b013e32833ae38b.   DOI
36 Visca P, Seifert H, Towner KJ. Acinetobacter infection-an emerging threat to human health. IUBMB Life. 2011;63:1048-1054. https://doi.org/10.1002/iub.534.   DOI
37 Wisplinghoff H, Paulus T, Lugenheim M, Stefanik D, Higgins PG, Edmond MB, et al. Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. J Infect. 2012;64:282-290. https://doi.org/10.1016/j.jinf.2011.12.008.   DOI
38 Singh H, Thangaraj P, Chakrabarti. A. Acinetobacter baumannii: a brief account of mechanisms of multidrug resistance and current and future therapeutic management. J Clin Diagn Res. 2013;7:2602-2605. https://doi.org/10.7860/JCDR/2013/6337.3626.   DOI
39 Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42-51. https://doi.org/10.1038/nrmicro3380.   DOI