• Title/Summary/Keyword: 합성 제어

Search Result 998, Processing Time 0.03 seconds

Preparation of Poly(vinylpyrrolidone) Coated Iron Oxide Nanoparticles for Contrast Agent (조영제로 활용하기 위한 폴리(비닐피롤리돈)이 코팅된 산화철 나노 입자의 제조)

  • Lee Ha Young;Lim Nak Hyun;Seo Jin A;Khang Gilson;Kim Jungahn;Lee Hai Bang;Cho Sun Hang
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.266-270
    • /
    • 2005
  • Iron oxide nanoparticles were prepared by the thermal decomposition of iron pentacarbonyl (Fe(CO)$_5$) Poly(vinylpyrrolidone) (PVP) was used as surface-modifying agent to control the size of the iron oxide nanoparticles. The crystalline structure of PVP coated iron oxide nanoparticles was determined by XRD. The size of PVP coated iron oxide nanoparticles was determined by TEM and ELS. The particle sizes of PVP coated iron oxide nanoparticles were controlled by adjusting the molar ratio of PVP/Fe (CO)$_5$, solvent and molecular weight of PVP Particle sizes increased with increasing PVP content. Spherical $50\~100$ nm sized iron oxide nanoclusters were produced when dimethylformamide was used as a solvent. And well-defined 10 nm iron oxide nanoparticles were produced in Carbitol. The prepared PVP coated iron oxide nanoparticles exhibited a well-dispersed property in water. The results obtained in this study confirmed the feasibility of the PVP-coated iron oxide nanoparticles as a biomaterial for MRI contrast agent.

Optical and Electrical Properties with Various Post-Heating Temperatures in the Al-Doped ZnO Thin Films by Sol-Gel Process (졸-겔법에 의해 제조된 Al-Doped ZnO 박막의 후열처리 온도에 따른 전기 및 광학적 특성)

  • Ko, Seok-Bae;Choi, Moon-Sun;Ko, Hyungduk;Lee, Chung-Sun;Tai, Weon-Pil;Suh, Su-Jeong;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.742-748
    • /
    • 2004
  • Isopropanol of low boiling point was used as a solvent to prepare Al-doped ZnO(AZO) thin films. A homogeneous and stable sol was made from Zn acetate a solute whose mole concentration was 0.7mol/$\iota$ and Al chloride as a dopant. Al-doped ZnO thin films were prepared by sol-gel method as a function of post-heating temperature from 500 to $700^{\circ}C$ and the optical and electrical properties were investigated. The c-axis orientation along (002) plane was enhanced with the increasing of post-heating temperature and the surface morphology of the films showed a homogeneous and nano-sized microstructure. The optical transmittance of the films post-heated below $650^{\circ}C$ was over $86\%$, but decreased at $700^{\circ}C$. The electrical resistivity of the thin films decreased from 73 to 22 $\Omega$-cm as the post-heating temperature increased up to $650^{\circ}C$, but increased greatly to 580 $\Omega$-cm at $700^{\circ}C$. XPS analysis indicated that the deterioration of electrical and optical properties was attributed to the precipitation of $Al_2O_3$ phase on the surface of AZO thin film. This result suggests that the optimum post-heating temperature to improve electrical and optical properties is $600^{\circ}C$.

Developement of Planar Active Array Antenna System for Radar (평면형 능동 위상 배열 레이더용 안테나 시스템 개발)

  • Chon, Sang-Mi;Na, Hyung-Gi;Kim, Soo-Bum;Lee, Jeong-Won;Kim, Dong-Yoon;Kim, Seon-Joo;Ahn, Chang-Soo;Lee, Chang-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1340-1350
    • /
    • 2009
  • The design and implementation of planar Active Phased Array Antenna System are described in this paper. This Antenna system operates at X-band with its bandwidth 10 % and dual polarization is realized using dual slot feeding microstrip patch antenna and SPDT(Single Pole Double Through) switch. Array Structure is $16\times16$ triangular lattice structure and each array is composed of TR(Transmit & Receive) module with more than 40 dBm power. Each TR module includes digital attenuator and phase shifter so that antenna beam can be electronically steered over a scan angle$({\pm}60^{\circ})$. Measurement of antenna pattern is conducted using a near field chamber and the results coincide with the expected beam pattern. From these results, it can be convinced that this antenna can be used with control of beam steering and beam shaping.

Low-Complexity Deeply Embedded CPU and SoC Implementation (낮은 복잡도의 Deeply Embedded 중앙처리장치 및 시스템온칩 구현)

  • Park, Chester Sungchung;Park, Sungkyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.699-707
    • /
    • 2016
  • This paper proposes a low-complexity central processing unit (CPU) that is suitable for deeply embedded systems, including Internet of things (IoT) applications. The core features a 16-bit instruction set architecture (ISA) that leads to high code density, as well as a multicycle architecture with a counter-based control unit and adder sharing that lead to a small hardware area. A co-processor, instruction cache, AMBA bus, internal SRAM, external memory, on-chip debugger (OCD), and peripheral I/Os are placed around the core to make a system-on-a-chip (SoC) platform. This platform is based on a modified Harvard architecture to facilitate memory access by reducing the number of access clock cycles. The SoC platform and CPU were simulated and verified at the C and the assembly levels, and FPGA prototyping with integrated logic analysis was carried out. The CPU was synthesized at the ASIC front-end gate netlist level using a $0.18{\mu}m$ digital CMOS technology with 1.8V supply, resulting in a gate count of merely 7700 at a 50MHz clock speed. The SoC platform was embedded in an FPGA on a miniature board and applied to deeply embedded IoT applications.

Haze Characteristics of Mica Coated with Magnesium Oxide (산화마그네슘을 코팅한 마이카의 헤이즈 특성)

  • Kang, Kuk-Hyoun;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.888-894
    • /
    • 2015
  • Inorganic composite particles have excellent physical and chemical characteristics and have been applied in various industries. Recently, many studies have examined the optical properties, such as light scattering, refraction, transmission characteristics, by coating organic-inorganic materials on a substrate, such as mica. Mica is widely applied as a pigment, plastics, painted products, and ceramics because of its high chemical stability, durability and non-toxicity. Magnesium oxide has a range of properties, such as high light transmittance, corrosion resistance and non-toxicity, and it is used as an optical material and polymer additives. To use the optical properties of mica and magnesium oxide, mica was coated with magnesium hydroxide by a dissolution and recrystallization process. In this study, the optimal conditions for the haze value of the particles were found by adjusting the amount of precursors and pH. Magnesium hydroxide layers were formed on the surfaces of mica and converted to MgO after calcination at $400^{\circ}C$ for 4 h. The results showed that the value of MgO-coated mica haze can be controlled easily by the amount of the magnesium hydroxide and pH. The optical properties of the inorganic composite powder were analyzed using a hazemeter and the highest haze value was 85.92 % at pH 9. The physicochemical properties of the synthesized composite was analyzed by SEM, XRD, EDS, and PSA.

Pose Transformation of a Frontal Face Image by Invertible Meshwarp Algorithm (역전가능 메쉬워프 알고리즘에 의한 정면 얼굴 영상의 포즈 변형)

  • 오승택;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.153-163
    • /
    • 2003
  • In this paper, we propose a new technique of image based rendering(IBR) for the pose transformation of a face by using only a frontal face image and its mesh without a three-dimensional model. To substitute the 3D geometric model, first, we make up a standard mesh set of a certain person for several face sides ; front. left, right, half-left and half-right sides. For the given person, we compose only the frontal mesh of the frontal face image to be transformed. The other mesh is automatically generated based on the standard mesh set. And then, the frontal face image is geometrically transformed to give different view by using Invertible Meshwarp Algorithm, which is improved to tolerate the overlap or inversion of neighbor vertexes in the mesh. The same warping algorithm is used to generate the opening or closing effect of both eyes and a mouth. To evaluate the transformation performance, we capture dynamic images from 10 persons rotating their heads horizontally. And we measure the location error of 14 main features between the corresponding original and transformed facial images. That is, the average difference is calculated between the distances from the center of both eyes to each feature point for the corresponding original and transformed images. As a result, the average error in feature location is about 7.0% of the distance from the center of both eyes to the center of a mouth.

The Study of Surface Plasmonic Bands Using Block Copolymer Nanopatterns (블록공중합체 나노패턴을 이용한 표면 플라즈몬 연구)

  • Yoo, Seung Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.88-93
    • /
    • 2017
  • It is important to develop a simple method oftuning localized surface plasmon resonance(LSPR) properties, due to their numerous applications. In addition, the careful examination of the shape, size and combination of metal nanoparticles is useful for understanding the relation between the LSPR properties and metal nanostructures. This article describes the dependence of theLSPR properties on the arrays of metal nanoparticles obtained from a block copolymer(BCP) micellar thin film. Firstly, two different Au nanostructures, having a dot and ring shape, were fabricated using conventional block copolymer micelle lithography. Then, Ag was plated on the Au nanostructures through the silver mirror reaction technique to obtain Au/Ag bimetallic nanostructures. During the production of these metallic nanostructures, the processing factors, such as the pre-treatment by ethanol, silver mirror reaction time and removal or not of the BCP, were varied. Once the Au nanoparticles were synthesized, Ag was properly plated on the Au, providing two distinguishable characteristic plasmonic bands at around 525nm for Au and around 420nm for Ag, as confirmed bythe UV-vis measurements. However, when a small amount of Au seed nanoparticles, which accelerate the Ag plating speed,was formed by usinga block copolymer with a relatively highmolecular weight, all of the Au surfaces were fully covered by Ag during the silver mirror reaction, showing only the characteristic peak for Ag at around 420nm. The Ag plating technique on Au nanoparticles pre-synthesized from a block copolymer is useful to study the LSPR properties carefully.

A Study of Recycling Process to Recovery Valuable Resources from Aluminum Black Dross (알루미늄 블랙드로스로부터 유가자원 회수를 위한 재활용 공정 연구)

  • Kang, Yubin;Im, Byoungyong;Kim, Dae-Guen;Lee, Chan Gi;Ahn, Byung-Doo;Kim, Yong Hwan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.61-68
    • /
    • 2018
  • The aluminum dross is oxide generated on the surface of the molten metal during the aluminum melting process and it is divided into white dross and black dross according to presence of the Salt flux. White dross has high metal content and is recycled via the melting process. Black dross is largely berried, because the it has a low metal content and difficulty in separating the components. Black dross contains a salt components such as NaCl and KCl, and inorganic materials such as $Al_2O_3$ and MgO, and it is necessary to study the technology to recover and recycle such valuable resources. In this study, a process for recycling aluminum black dross was proposed. The inorganic and soluble substances present in the black dross were separated through crushing-dissolution-solid/liquid separation-decompression evaporating. By controlling the ratio of water and black dross, the recovery condition of the separated product was optimized and we confirmed the highest Salt flux recovery efficiency 91 wt.% at black dross:water ratio 1:9. Finally, Through the synthesis of zeolite using recovered ceramic material, the materialization possibility of black dross was confirmed.

A practial design of direct digital frequency synthesizer with multi-ROM configuration (병렬 구조의 직접 디지털 주파수 합성기의 설계)

  • 이종선;김대용;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3235-3245
    • /
    • 1996
  • A DDFS(Direct Digital Frequency Synthesizer) used in spread spectrum communication systems must need fast switching speed, high resolution(the step size of the synthesizer), small size and low power. The chip has been designed with four parallel sine look-up table to achieve four times throughput of a single DDFS. To achieve a high processing speed DDFS chip, a 24-bit pipelined CMOS technique has been applied to the phase accumulator design. To reduce the size of the ROM, each sine ROM of the DDFS is stored 0-.pi./2 sine wave data by taking advantage of the fact that only one quadrant of the sine needs to be stored, since the sine the sine has symmetric property. And the 8 bit of phase accumulator's output are used as ROM addresses, and the 2 MSBs control the quadrants to synthesis the sine wave. To compensate the spectrum purity ty phase truncation, the DDFS use a noise shaper that structure like a phase accumlator. The system input clock is divided clock, 1/2*clock, and 1/4*clock. and the system use a low frequency(1/4*clock) except MUX block, so reduce the power consumption. A 107MHz DDFS(Direct Digital Frequency Synthesizer) implemented using 0.8.mu.m CMOS gate array technologies is presented. The synthesizer covers a bandwidth from DC to 26.5MHz in steps of 1.48Hz with a switching speed of 0.5.mu.s and a turing latency of 55 clock cycles. The DDFS synthesizes 10 bit sine waveforms with a spectral purity of -65dBc. Power consumption is 276.5mW at 40MHz and 5V.

  • PDF

Properties of Strength and Stress-Strain of Recycled-Plastic Polymer Concrete (폐플라스틱 재활용 폴리머콘크리트의 강도와 응력-변형률 특성)

  • Jo Byung-Wan;Koo Jakap;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.329-334
    • /
    • 2005
  • The use of Polymer Concrete (PC) is growing very rapidly in many structural and construction applications such as box culverts, hazardous waste containers, trench lines, floor drains and the repair and overlay of damaged cement concrete surfaces in pavements, bridges, etc. However, PC has a defect economically because resin which be used for binder is expensive. Therefore the latest research is being progressed to replace existing resin with new resin which can reduce the high cost. Here, Polymer concrete using the recycled PET(polyethylene terephthalate) has some merits such as decrease of environmental destruction, decrease of environmental pollution and development of new construction materials. The variables of this study are amount of resin, curing condition and maximum size of coarse aggregate to find out mechanic properties of this. Stress-strain curve was obtained using MTS equipment by strain control. The results indicated that modulus of elasticity was increased gradually in an ascending branch of curve, as an increase of resin content. Compressive strength was the highest for resin content of $13\%$. And Compressive strength was increased as maximum size of coarse aggregate increases. The strain at maximum stress increases with an increase of resin content and size of coarse aggregate. For the descending branch of stress-strain curve the brittle fracture was decreased when it was cured at the room temperature compared to high temperature.