Preparation of Poly(vinylpyrrolidone) Coated Iron Oxide Nanoparticles for Contrast Agent

조영제로 활용하기 위한 폴리(비닐피롤리돈)이 코팅된 산화철 나노 입자의 제조

  • Lee Ha Young (Department of Advanced Organic materials Engineering, Chonbuk National University) ;
  • Lim Nak Hyun (Department of Polymer Nano Science and Technology, Chonbuk National University) ;
  • Seo Jin A (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology) ;
  • Khang Gilson (Department of Advanced Organic Materials Engineering, Chonbuk National University, Department of Polymer Nano Science and Technology, Chonbuk National University) ;
  • Kim Jungahn (Polymer Hybrids Center, Korea Institute of Science and Technology) ;
  • Lee Hai Bang (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology) ;
  • Cho Sun Hang (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
  • 이하영 (전북대학교 유기신물질공학과) ;
  • 임낙현 (전북대학교 고분자 나노공학과) ;
  • 서진아 (한국화학연구원 나노생체재료연구팀) ;
  • 강길선 (전북대학교 유기신물질공학과, 전북대학교 고분자 나노공학과) ;
  • 김정안 (한국과학기술연구원) ;
  • 이해방 (한국화학연구원 나노생체재료연구팀) ;
  • 조선행 (한국화학연구원 나노생체재료연구팀)
  • Published : 2005.05.01

Abstract

Iron oxide nanoparticles were prepared by the thermal decomposition of iron pentacarbonyl (Fe(CO)$_5$) Poly(vinylpyrrolidone) (PVP) was used as surface-modifying agent to control the size of the iron oxide nanoparticles. The crystalline structure of PVP coated iron oxide nanoparticles was determined by XRD. The size of PVP coated iron oxide nanoparticles was determined by TEM and ELS. The particle sizes of PVP coated iron oxide nanoparticles were controlled by adjusting the molar ratio of PVP/Fe (CO)$_5$, solvent and molecular weight of PVP Particle sizes increased with increasing PVP content. Spherical $50\~100$ nm sized iron oxide nanoclusters were produced when dimethylformamide was used as a solvent. And well-defined 10 nm iron oxide nanoparticles were produced in Carbitol. The prepared PVP coated iron oxide nanoparticles exhibited a well-dispersed property in water. The results obtained in this study confirmed the feasibility of the PVP-coated iron oxide nanoparticles as a biomaterial for MRI contrast agent.

Fe(CO)$_5$(철-펜타카보닐)의 열분해법을 이용하여 산화철 나노 입자를 제조하였다. 표면 조절 시약으로서 생체적 합성 고분자인 폴리(비닐피롤리돈)(PVP)을 사용하여 산화철 나노 입자의 크기를 제어하였다. 산화철 나노 입자의 형성 여부는 XRD를 통해 분석하였으며, PVP 코팅된 산화철 나노 입자의 크기는 TEM, ELS를 통하여 분석하였다. PVP 코팅 된 산화철 나노 입자의 입자 크기는 PVP/Fe(CO)$_5$의 몰비와 용매, PVP 분자량에 의해 조절되었다. PVP 함량이 증가함에 따라 입자 크기가 증가하였으며 디메틸포름아마이드를 용매로 하였을 때 $50\~100$ nm의 산화철 나노 클러스터가 형성되었고, Carbitol을 용매로 하였을 때 균일하게 분산된 10 nm 이하의 작은 PVP 코팅된 산화철 나노 입자가 형성되었다. 본 연구에서 제조된 PVP코팅된 산화철 나노 입자는 물에 잘 분산될 뿐 아니라 생체적합적인 PVP로 코팅이 되었기 때문에 in vivo에 응용할 수 있으며, 입자의 크기가 $50\~100$nm및 10 nm로 조절됨으로써 MRI 조영제로서 가능성을 가지고 있음을 확인하였다.

Keywords

References

  1. Z. Li, H. Chen, H. Bao, and M. Gao, J. Am. Chem. Soc., 16, 1391 (2004)
  2. P. K. Gupta, C. T. Hung, F. C. Lam, and D. G. Perrier, J. Pharm., 43, 167 (1998)
  3. A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix, J. Magn. Magn. Mater., 225, 118 (2001)
  4. J. W. Bulte, Y. Hoekstra, R. L. Kamman, R. L. Magin, A. G. Webb, R. W. Briggs, K. G. Go, C. E. Hulstaert, and S. Miltenyi, Magn. Reson, Med., 25, 148 (1992)
  5. K. Lind, M. Kresse, N. Debus, and R. Muller, J. Drug Target, 10, 221 (2002)
  6. M. Bellin, C. Beigelman, and S. Precetti, Eur. J. Radiol., 34, 257 (2000)
  7. B. Bonnemain, J. Drug Target, 6, 167 (1998)
  8. R. Muller, P. Vallet, F. Maton, A. Roch, J. Goudemant, L. Vander, P. Gillis, S. Peto, F. Moiny, and Y. H. Van, Invest. Radiol., 25, S34 (1990)
  9. R. Weissleder, G. Elizondo, J. Wittenberg, C. Rabito, H. Bengele, and L. Josephson, Radiology, 175, 489 (1990)
  10. K. Thode, M. Luck, W. Schroder, W. Semmler, T. Blunk, R. Muller, and M. Kresse, J. Drug Target, 5, 35 (1997)
  11. P. Reimer, K. Kwong, R. Weisskoff, M. Cohen, T. Brady, and R. Weisslender, J. Magn. Reson. Imaging, 2, 177 (1992)
  12. C. Chouly, D. Pouliquen, I. Lucet, J. Jeune, and P. Jallet, J. Microencapsul., 13, 245 (1996)
  13. M. P. Morales, O. Bomati-Migucl, R. Perez de Alejo, J. Ruiz-Cabello, S. Veintemillas-Verdaguer, and K. O'Grady, J. Magn. Magn. Mater., 266, 102 (2003)
  14. E. Allemann, R. Gurny, and E. Doelker, Eur. J. Pharmacol. Biopharm, 39, 173 (1993)
  15. N. Kohler, G. E. Fryxell, and M. Zhang, J. Am. Chem. Soc., 23, 126 (2004)
  16. J. Wonterghem, S. Morup, S. W. Charles, S. Wells, and J. Villadsen, Phys. Rev. Lett., 55, 410 (1985)
  17. C. C. Berry, S. Wells, S. Charles, and A. S. G. Curtis, Biomaterials, 24, 4551 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  18. L. A. Harris, J. D. Goff, A. Y. Carmichael, J. S. Riffle, J. J. Harbum, T. G. St. Pierre, and M. Saunders, Chem. Mater., 15, 1367 (2003) https://doi.org/10.1021/cm020766t
  19. R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, Colloid Surface A, 220, 151(2003)
  20. H. Yao, Y. Takada, and N. Kitamura, Langmuir, 14,595 (1998)
  21. D. L. Garrec, S. Gori, L. Luo, D. Lessard, D. C. Smith, M. Yessine, M. Ranger, and J. Leroux, J. Control. Release, 99, 83 (2004)
  22. Y. Kaneda, Y. Tsutsumi, Y. Yoshioka, H. Kamada, Y. Yamamoto, H. Kodaira, S. Tsunoda, T. Okamoto, Y. Mukai, H. Shibata, S. Nakagawa, and T. Mayumi, Biomaterials, 25, 3259 (2004)
  23. L. A. Harris, J. D. Goff, A. Y Carmichael, J. S. Riffle, J. J. Pierre, and T. G. Saunders, M. Chem. Mater., 15, 1367 (2003) https://doi.org/10.1021/cm020994n
  24. S. Mann, H. C. Sparks, and R. G. Board, Adv. Microb. Physiol., 31, 125 (1990)
  25. S. V. Verdaguer, O. B. Miguel, and M. P. Morales, Scr. Mater., 47, 589 (2002) https://doi.org/10.1016/S1359-6462(02)00198-7
  26. J. Rockenberger, E. C. Scher, and P. A. Alivissatos, J. Am. Chem. Soc., 121, 11595 (1999)
  27. S. H. Sun and H. Zeng, J. Am. Chem. Soc., 124, 8204 (2002)
  28. T. Hyeon, S. S. Lee, J. Park, Y Chung, and H. B. Na, J. Am. Chem. Soc., 123, 12798 (2001) https://doi.org/10.1021/ja002793v
  29. S. King, K. Hyunh, and R. Tannenbaum, J. Phys. Chem. B, 107, 12097 (2003)
  30. R. Tannenbaum, S. Reich, C. L. Flenniken, and E. P. Goldberg, Adv. Mater., 14, 1402 (2002)
  31. R. Tannenbaum, C. L. Flenniken, and E. P. Goldberg, J. Polym. Sci., Polym. Phys. Ed., 25, 1341 (1987)
  32. R. Tannenbaum, C. L. Flenniken, and E. P. Goldberg, J. Polym. Sci., Polym. Phys. Ed., 28, 2421 (1990)
  33. R. Tannenbaum, Langmuir, 13, 5056 (1997)
  34. W. Y. William, C. F. Joshua, T. Y Cafer, and L. C. Vicki, Chem. Commun., 2306 (2004)
  35. J. Cheon, N. J. Kang, S. M. Lee, J. H. Lee, J. H. Yoon, and S. J. Oh, J. Am. Chem. Soc., 126, 1950 (2004) https://doi.org/10.1021/ja037954k
  36. J. Rockenberger, E. C. Scher, and A. P. Alivisators, J. Am. Chem. Soc., 121, 11595 (1999)
  37. J. van Wonterghem, S. Morup, S. W. Charls, S. Wells, and J. Villadsen, Phys. Rev. Lett., 55, 410 (1985)
  38. G. D. Mendenhall, Y. Geng, and J. Hwang, J. Colloid. Interf. Sci., 184, 519 (1996)
  39. M. Yin, A. Willis, F. Redl, N. J. Turro, and S. P. O'Brien, J. Mater. Res., 19, 1208 (2004)
  40. M. Chastellain, A. Petri, and H. Hofmann, J. Colloid. Interf. Sci., 278, 353 (2004)
  41. E. Tadd, A. Zeno, M. Zubris, N. Dan, and R. Tannenbaum, Macromolecules, 36, 6497 (2003)