• Title/Summary/Keyword: 합성 작용

Search Result 1,552, Processing Time 0.036 seconds

Use of Plant Materials for Decontamination of Waste Water Polluted with 2,4-Dichlorophenol (2,4-Dichlorophenol로 오염된 폐수의 정화를 위한 식물체의 이용)

  • Lee, Jung-Eun;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.292-297
    • /
    • 1999
  • This study was performed to estimate the possibility of use of plant materials as catalytic agents fur the decontamination of waste waters contaminated with organic pollutants by using 2,4-dichlorophenol(2,4-DCP) as a model pollutant. Plant materials containing high peroxidase activity were selected as catalysts for the removal of 2,4-DCP. Peroxidase activity, which plant materials were containing, was measured, and the greatest peroxidase activity was observed in shepherd's purse, followed by turnip, sweet potato, Chinese cabbage and white radish. The peroxidase activity in shepherd's purse was four times higher than that of horseradish purchased in U.S.A. Using shepherd' s purse and turnip, it was investigated the effect of various factors on the decontamination of 2,4-DCP through oxidative coupling. The removal of 2,4-DCP was extremely fast, and a maximal removal could be achieved within 3 min for shepherd' s purse and 15min for turnip. The pH range was from 3.0 to 8.0 and the amount of $H_2O_2$ added was 9mM when maximal removal was achieved(over 90%). No increasing removal of 2,4-DCP was observed due to increasing the amount of $H_2O_2$ added (over 9mM). The initial concentration affected the transformation of 2,4-DCP incubated with plant materials. When turnip was used as catalytic agent, it was observed decreasing transformation of 2,4-DCP due to increasing initial concentration.

  • PDF

Biodegradation of Recalcitrant Chlorinated Aromatic Compounds via Microbial Dechlorination (미생물의 탈염소화 작용에 의한 난분해성 염화방향족 오염물질의 분해)

  • 채종찬;김치경
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.129-138
    • /
    • 1999
  • Chlorinated aromatic compounds are one of the largest groups of environmental pollutants as a result of world-wide distribution by using them as herbicides, insecticides, fungicides, solvents, hydraulic and heat transfer fluids, plasticizers, and intermediates for chemical synthesis. Because of their toxicity, persistence, and bioaccumulation, the compounds contaminated ubiquitously in the biosphere has attracted public concerns in terms of serious influences to wild lives and a human being, such as carcinogenicity, mutagenicity, and disturbance in endocrine systems. The biological recalcitrance of the compounds is caused by the number, type, and position of the chlorine substituents as well as by their aromatic structures. In general, the carbon-halogen bonds increase the recalcitrance by increasing electronegativity of the substituent, so that the dechlorination of the compounds is focused as an important mechanism for biodegradation of chlorinated aromatics, along with the cleavage of aromatic rings. The removal of the chlorine substituents has been known as a key step for degradation of chlorinated aromatic compounds under aerobic condition. This can occur as an initial step via oxygenolytic, reductive, and hydrolytic mechanisms. The studies on the biochemistry and genetics about microbial dechlorination give us the potential informations for microbial degradation of xenobiotics contaminated in natural microcosms. Such investigations might provide biotechnological approaches to solve the environmental contamination, such as designing effective bioremediation systems using genetically engineered microorganisms.

  • PDF

RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives (가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계)

  • Do, Jeongyun;Guk, Seongoh;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.113-125
    • /
    • 2017
  • In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.

Optimization of Extraction Conditions from Hericium erinaceus by Response Surface Methodology (반응표면분석법에 의한 노루궁뎅이 버섯 에탄올 추출조건의 최적화)

  • Choi, Mi-Ae;Park, Nan-Young;Woo, Seung-Mi;Jeong, Yong-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.777-782
    • /
    • 2003
  • Response surface methodology (RSM) was used to monitor the characteristics of ethanol extracts from Hericium erinaceus. A central composite design was applied to investigate the effects of independent variables, ethanol concentration $(X_1)$, and sample ratio $(X_2)$ on dependent variables, soluble solid $(Y_1)$, total phenols $(Y_2)$, crude protein $(Y_3)$, electron donating ability $(Y_4)$, and browning color $(Y_5)$ of the extracts. As the sample ratio increased, the soluble solid content increased. Ethanol concentration played a minor role. Total phenols and crude protein increased with sample ratio. Sample ratio had a greater effect than alcohol concentration in the extraction of soluble solid, total phenols, crude protein, and browning color, with an exception of electron donating ability. The optimum ranges at 2 hr extraction was $3.9{\sim}5.0\;g/l00\;mL$ in sample ratio and $36{\sim}52%$ in ethanol concentration. Predicted values at the optimized conditions were acceptable when compared to experimental values.

A study on the electrochemical reduction of carbon dioxide (전기화학환원에 의한 이산화탄소의 수소화 반응연구)

  • Sim, Kyu-Sung;Kim, Jong-Won;Kim, Yeon-Soon;Myeong, Kwang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.1
    • /
    • pp.8-15
    • /
    • 1998
  • The catalytic hydrogenation of carbon dioxide has been studied for the fixation of carbon dioxide to mitigate global warming problems, but it needed hydrogen, which the price is still high. Recently, the electrochemical reduction of carbon dioxide has been drawn attractions because carbon dioxide could be converted to the valuable chemicals such as methane, ethane and alcohols electrochemically in the electrolyte solution using a catalytic electrode. This system is simple because the water electrolysis and hydrogenation take place at the same time using the surplus electricity at midnight. In this work, a continuous electrochemical reduction system was fabricated, which was composed of the reduction electrode (copper or perovskite type, $2{\times}2cm^2$), reference electrode(platinum, $2{\times}6cm^2$), standard electrode(Ag/AgCl), and potassium bicarbonate electrolyte solution saturated with carbon dioxide. The quality and quantity of the products and reduction current were analyzed, according to the electrolyte concentration and electrode type.

  • PDF

DPPH Radical Scavenging Effect and in vitro Lipid Peroxidation Inhibition by Portulaca oleracea (쇠비름(Portulace oleracea) 추출물의 DPPH radical 소거능과 in vitro 지질과산화 억제 효과와 그 활성성분)

  • 이희정;이범종;이동석;서영완
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.165-169
    • /
    • 2003
  • The antioxidative activity of Portulaca oleracea was tested using in vitro experimental models. Antioxidative activities were determined by measuring DPPH radical scavenging activity and lipid peroxide using 2-thiobarbituric and (TBA). The crude extract was sequentially partitioned with n-hexane, 15% aq. MeOH, EtOAc, n-BuOH, $H_2O$. A remarkable antioxidative effect was observed in the EtOAc and n-BuOH fractions. The DPPH radical scavenging effect ($IC_{50}$=17.90 $\mu\textrm{g}$/ml) of the n-BuOH soluble fraction was comparable with that of the natural antioxidant, $\alpha$-tocopherol ($IC_{50}$=6.99 $\mu\textrm{g}$/ml) and the inhibition effect of lipid peroxidation in mouse liver homogenate was similar to that of the natural antioxidant, L-ascorbic acid at a concentration of 1.0 mg/ml to 5 mg/ml.

Functional Analysis of an Antibiotic Regulatory Gene, afsR2 in S. lividans through DNA microarray System (DNA 마이크로어레이 시스템 분석을 통한 S. lividans 유래 항생제 조절유전자 afsR2 기능 분석)

  • Kim, Chang-Young;Noh, Jun-Hee;Lee, Han-Na;Kim, Eung-Soo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2009
  • AfsR2 in Streptomyces lividans, a 63-amino acid protein with limited sequence homology to Streptomyces sigma factors, has been known for a global regulatory protein stimulating multiple antibiotic biosynthetic pathways. Although the detailed regulatory mechanism of AfsK-AfsR-AfsR2 system has been well characterized, very little information about the AfsR2-dependent down-stream regulatory genes were characterized. Recently, the null mutant of afsS in S. coelicolor (the identical ortholog of afsR2) has been characterized through DNA microarray system, revealing that afsS deletion regulated several genes involved in antibiotic biosynthesis as well as phosphate-starvation. Through comparative DNA microarray analysis of afsR2-overexpressed S. lividans, here we also identify several afsR2-dependent genes involved in phosphate starvation, morphological differentiation, and antibiotic regulation in S. lividans, confirming that the AfsR2 plays an important pleiotrophic regulatory role in Streptomyces species.

A Study on Deketalization of Rigid ${\beta}$-Aminoketones (형태가 고정된 ${\beta}$-아미노케톤의 탈케탈화 (반응) 의 연구)

  • Jack C. Kim;Yong Tae Lee;Ung Chan Yoon;In-Seop Cho;Sung Hwan Moon;Sun Hong Han
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.557-566
    • /
    • 1988
  • The causes of failure in the deketalization of rigid ${\beta}$-aminoketals were separately investigated by examining the deketalization of 3 ketals, 2-ethylenedioxy-l-acenaphthenylamine (2), N-(2-ethylenedioxy-l-acenaphthenyl)acetamide(13) and trimethyl-2-ethylenedioxy-1-acenaphthenylammonium iodide(14), and by examining the deketalization of non-rigid ${\beta}$-aminoketal, 2-amino-l-ethylenedioxyacetophenone(19) and non-rigid aliphatic acetals, dimethylaminoformaldehyde dimethylacetal (20) and 2-aminoactaldehyde dimethyl acetal(21). While compounds 2 and 14 were not able to be hydrolyzed in the various acidic conditions 13 was easily deketalized. The result indicated the importance of electrostatic repulsion in the possible dicationic intermediates as a factor of failure in the deketalization. The observations of easy deketalization of compounds 19, 20 and 21 indicated that the structural characters of rigid $\beta-aminoketals$ are also important factors in the hydrolysis of ${\beta}$-aminoketals.

  • PDF

Effects of Bisphenol A on Gene Expression and Apoptosis of Leydig Cells in the Mouse Testis (생쥐 정소에서 비스페놀 에이 (Bisphenol A)가 Leydig Cell의 유전자 발현과 세포자멸사에 주는 영향)

  • Eo, Jin-Won;Lim, Hyun-Jung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.3
    • /
    • pp.181-191
    • /
    • 2008
  • Objective: Environmental chemicals alter reproduction, growth, and survival by changing the normal function of the endocrine system. Bisphenol A (BPA), one of the endocrine disruptors, is known to be an estrogen receptor agonist. Therefore, we hypothesized that BPA may affect male reproduction including spermatogenesis in the mouse testis. Methods: We used 7-week-old ICR mice. The first experiment group received BPA in sesame oil (vehicle, 1 mg/kg, 10 mg/kg, and 100 mg/kg) by i.p. injection and mice were sacrificed 24 hr later. The second experiment group received BPA (vehicle, 10 ${\mu}g/kg$, 1 mg/kg, and 100 mg/kg) daily for 14 days by subcutaneous injection. Expression of cell type-specific marker genes in the testis was evaluated by RT-PCR. Histological analysis, immunofluorescence staining, and TUNEL staining were also performed. Results: RT-PCR analyses showed that expression of luteinizing hormone receptor (LHR), a marker gene for the Leydig cell, was notably decreased in the testes of high dose-exposed mice. No obvious difference in the histology of testes was noted among treatment groups. Immunostaining of LHR in the first experiment group did not show noticeable difference in LHR protein expression in Leydig cells. Immunohistochemistry also revealed heightened expression of the immunoreactive Bax in the treatment group, and this was accompanied by positive TUNEL staining in the interstitial area within testis where Leydig cells reside. Conclusions: Our result suggests that BPA affects Leydig cell functions by altering gene expression and by increasing apoptosis in the mouse testis.

Effect of PLGA/Silk Fibroin Hybrid Film on Attachment and Proliferation of Schwann Cells (실크피브로인을 함유한 PLGA 하이브리드 필름이 슈반세포의 부착과 증식에 미치는 영향)

  • Kim, Hye-Lin;Yoo, Han-Na;Park, Hyun-Jin;Kim, Yong-Gi;Lee, Dong-Won;Kang, Young-Sun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable synthetic polymer with acceptable mechanical strength and well-controlled degradation rate. Also, it can be easily fabricated into many shapes. Silk fibroin contains powerful bioactive molecules. We fabricated natural/synthetic hybrid films using 0, 10, 20, 40 and 80 wt% of silk fibroin. Schwann cells (SCs) were seeded on PLGA/silk fibroin hybrid films and confirmed the effects of adhesion and proliferation on SCs according to the content of silk fibroin. In this study, we confirmed PLGA/silk fibroin hybrid film containing 40% and 80% of silk fibroin interrupted adhesion and proliferation of SCs. Films containing 10% and 20% of silk, however, provided suitable environment for growth and proliferation of SCs. These results suggest that silk fibroin provides suitables surface to neural cells and its proper content provides proper culture conditions to improve cell adhesion and proliferation.