• Title/Summary/Keyword: 함수적-GARCH 모형

Search Result 13, Processing Time 0.02 seconds

The fGARCH(1, 1) as a functional volatility measure of ultra high frequency time series (함수적 변동성 fGARCH(1, 1)모형을 통한 초고빈도 시계열 변동성)

  • Yoon, J.E.;Kim, Jong-Min;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.667-675
    • /
    • 2018
  • When a financial time series consists of daily (closing) returns, traditional volatility models such as autoregressive conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH) are useful to figure out daily volatilities. With high frequency returns in a day, one may adopt various multivariate GARCH techniques (MGARCH) (Tsay, Multivariate Time Series Analysis With R and Financial Application, John Wiley, 2014) to obtain intraday volatilities as long as the high frequency is moderate. When it comes to the ultra high frequency (UHF) case (e.g., one minute prices are available everyday), a new model needs to be developed to suit UHF time series in order to figure out continuous time intraday-volatilities. Aue et al. (Journal of Time Series Analysis, 38, 3-21; 2017) proposed functional GARCH (fGARCH) to analyze functional volatilities based on UHF data. This article introduces fGARCH to the readers and illustrates how to estimate fGARCH equations using UHF data of KOSPI and Hyundai motor company.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

Stochastic Volatility Model vs. GARCH Model : A Comparative Study (확률적 변동성 모형과 자기회귀이분산 모형의 비교분석)

  • 이용흔;김삼용;황선영
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.217-224
    • /
    • 2003
  • The volatility in the financial data is usually measured by conditional variance. Two main streams for gauging conditional variance are stochastic volatility (SV) model and autoregressive type approach (GARCH). This article is conducting comparative study between SV and GARCH through the Korean Stock Prices Index (KOSPI) data. It is seen that SV model is slightly better than GARCH(1,1) in analyzing KOSPI data.

Comparison of a Class of Nonlinear Time Series models (GARCH, IGARCH, EGARCH) (이분산성 시계열 모형(GARCH, IGARCH, EGARCH)들의 성능 비교)

  • Kim S.Y.;Lee Y.H.
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2006
  • In this paper, we analyse the volatilities in financial data such as stock prices and exchange rates in term of a class of nonlinear time series models. We compare the performance of Generalized Autoregressive Conditional Heteroscadastic(GARCH) , Integrated GARCH(IGARCH), Exponential GARCH(EGARCH) models by KOSPI (Korean stock Prices Index) data. The estimation for the parameters in the models was carried out by the ML methods.

Performance analysis of EVT-GARCH-Copula models for estimating portfolio Value at Risk (포트폴리오 VaR 측정을 위한 EVT-GARCH-코퓰러 모형의 성과분석)

  • Lee, Sang Hun;Yeo, Sung Chil
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.753-771
    • /
    • 2016
  • Value at Risk (VaR) is widely used as an important tool for risk management of financial institutions. In this paper we discuss estimation and back testing for VaR of the portfolio composed of KOSPI, Dow Jones, Shanghai, Nikkei indexes. The copula functions are adopted to construct the multivariate distributions of portfolio components from marginal distributions that combine extreme value theory and GARCH models. Volatility models with t distribution of the error terms using Gaussian, t, Clayton and Frank copula functions are shown to be more appropriate than the other models, in particular the model using the Frank copula is shown to be the best.

Prediction of Conditional Variance under GARCH Model Based on Bootstrap Methods (붓스트랩 방법을 이용한 일반화 자기회귀 조건부 이분산모형에서의 조건부 분산 예측)

  • Kim, Hee-Young;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.287-297
    • /
    • 2009
  • In terms of generalized autoregressive conditional heteroscedastic(GARCH) model, estimation of prediction interval based on likelihood is quite sensitive to distribution of error. Moveover, it is not an easy job to construct prediction interval for conditional variance. Recent studies show that the bootstrap method can be one of the alternatives for solving the problems. In this paper, we introduced the bootstrap approach proposed by Pascual et al. (2006). We employed it to Korean stock price data set.

우리나라 주식수익률(株式收益率)의 변동성(變動性)과 정보비대칭(情報非對稱)에 관한 실증적(實證的) 연구(硏究) - ARCH형태(形態)의 모형(模型)을 중심(中心)으로 -

  • Lee, Yun-Seon
    • The Korean Journal of Financial Studies
    • /
    • v.3 no.2
    • /
    • pp.157-185
    • /
    • 1996
  • 본 연구는 한국증권시장에서 변동성의 정보비대칭효과를 조건부 이분산모형을 이용하여 검증하고자 하였다. 검증방법으로는 Engle과 Ng (1993)의 연구에 기초하여 정보반응곡선(News impact curve)으로 분석하였다. 분석자료로 1980년 부터 1995년 까지의 한국종합주가지수, 일별 초과수익률자료를 사용하였다. 정보반응곡선에 이용한 모형은 GARCH 모형, EGARCH 모형, TGARCH 모형, AGARCH 모형등 4개의 조건부 이분산 모형이다. 무조건 분산을 이용한 정보 반응곡선의 함수형태로 보면, 분산의 정보반응에 있어서 GARCH 모형은 대칭적으로 반응하며 나머지 조건부 이분산 모형인 EGARCH 모형, TGARCH 모형, 그리고 AGARCH 모형은 비대칭적으로 반응하는 모형임을 알 수 있었다. 실증분석결과 정보반응곡선을 통하여 악재(bad news)정보에 따라 예측하지 못한 주식수익률의 하락이 호재(good news)에 따른 예측하지 못한 주식수익률의 상승보다 더 큰 변동성을 발견할 수 있었다. 그러나 비대칭성의 크기는 그다지 큰 것으로 보이지 않았다. 모형적합성 검정에서도 4개의 조건부 이분산 모형은 모두 적합한 것으로 보인다. 그중에서도 EGARCH 모형과 TGARCH 모형이 상대적으로 주가예측력이 뛰어나 보인다. 그러나 변동성의 정보 비대칭반응을 통계적으로 유의적인 것으로 확인한 모형은 TGARCH모형 뿐이었다.

  • PDF

Volatility of Export Volume and Export Value of Gwangyang Port (광양항의 수출물동량과 수출액의 변동성)

  • Mo, Soo-Won;Lee, Kwang-Bae
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • The standard GARCH model imposing symmetry on the conditional variance, tends to fail in capturing some important features of the data. This paper, hence, introduces the models capturing asymmetric effect. They are the EGARCH model and the GJR model. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. This paper shows that there is significant evidence of GARCH-type process in the data, as shown by the test for the Ljung-Box Q statistic on the squared residual data. The estimated unconditional density function for squared residual is clearly skewed to the left and markedly leptokurtic when compared with the standard normal distribution. The observation of volatility clustering is also clearly reinforced by the plot of the squared value of residuals of export volume and values. The unconditional variance of both export volumes and export value indicates that large shocks of either sign tend to be followed by large shocks, and small shocks of either sign tend to follow small shocks. The estimated export volume news impact curve for the GARCH also suggests that $h_t$ is overestimated for large negative and positive shocks. The conditional variance equation of the GARCH model for export volumes contains two parameters ${\alpha}$ and ${\beta}$ that are insignificant, indicating that the GARCH model is a poor characterization of the conditional variance of export volumes. The conditional variance equation of the EGARCH model for export value, however, shows a positive sign of parameter ${\delta}$, which is contrary to our expectation, while the GJR model exhibits that parameters ${\alpha}$ and ${\beta}$ are insignificant, and ${\delta}$ is marginally significant. That indicates that the asymmetric volatility models are poor characterization of the conditional variance of export value. It is concluded that the asymmetric EGARCH and GJR model are appropriate in explaining the volatility of export volume, while the symmetric standard GARCH model is good for capturing the volatility.

A Study on the Relation Exchange Rate Volatility to Trading Volume of Container in Korea (환율변동성과 컨테이너물동량과의 관계)

  • Choi, Bong-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • The purpose of this study is to examine the effect of exchange rate volatility on Trading Volume of Container of Korea, and to induce policy implication in the contex of GARCH and regression model. In order to test whether time series data is stationary and the model is fitness or not, we put in operation unit root test, cointegration test. And we apply impulse response functions and variance decomposition to the structural model to estimate dynamic short run behavior of variables. The major empirical results of the study show that the increase in exchange rate volatility exerts a significant negative effect on Trading Volume of Container in long run. The results Granger causality based on an error correction model indicate that uni-directional causality between trading volume of container and exchange rate volatility is detected. This study applies impulse response function and variance decompositions to get additional information regarding the Trading Volume of Container to shocks in exchange rate volatility. The results indicate that the impact of exchange rate volatility on Trading Volume of Container is negative and converges on a stable negative equilibrium in short-run. Th exchange rate volatility have a large impact on variance of Trading Volume of Container, the effect of exchange rate volatility is small in very short run but become larger with time. We can infer policy suggestion as follows; we must make a stable policy of exchange rate to get more Trading Volume of Container

  • PDF

Functional ARCH (fARCH) for high-frequency time series: illustration (고빈도 시계열 분석을 위한 함수 변동성 fARCH(1) 모형 소개와 예시)

  • Yoon, J.E.;Kim, Jong-Min;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.983-991
    • /
    • 2017
  • High frequency time series are now prevalent in financial data. However, models need to be further developed to suit high frequency time series that account for intraday volatilities since traditional volatility models such as ARCH and GARCH are concerned only with daily volatilities. Due to $H{\ddot{o}}rmann$ et al. (2013), functional ARCH abbreviated as fARCH is proposed to analyze intraday volatilities based on high frequency time series. This article introduces fARCH to readers that illustrate intraday volatility configuration on the KOSPI and the Hyundai motor company based on the data with one minute high frequency.