본 연구에서는 학술 소셜 네트워킹 서비스에서의 연구자 셀프 아카이빙 동기를 학문 분야별로 비교하였다. 대표적인 학술 소셜 네트워킹 서비스인 ResearchGate 이용자를 대상으로 선행연구에서는 온라인 설문조사 결과를 실시하여 연구자의 18가지 셀프 아카이빙 동기 요인(흥미, 개인적/직업적 이익, 평판, 학습, 자기효능감, 이타심, 호혜성, 신용, 공동체 이익, 사회 참여, 홍보, 접근성, 문화, 외부적 요인, 신뢰, 시스템 안정성, 저작권 문제, 부가적인 시간 및 노력)을 도출하였다. 후속 연구인 본 연구에서는 Biglan의 학문 분류 기준을 적용하여 연구자의 학문 분야를 구분하고, 이들 분야별 셀프 아카이빙 동기를 비교하였다. 먼저 연구자들의 학문 분야를 경성-순수, 경성-응용, 연성-순수, 연성-응용으로 구분하여 동기를 분석하였으며, 그 다음 단계에서는 경성-연성과 순수-응용으로 구분하여 비교하였다. 나아가 연구자의 인구통계학적 특성과 ResearchGate 이용 현황에 따른 동기의 차이도 살펴보았다. 연구 결과, 학문 분야에 따라 흥미, 접근성, 외부적 요인, 부가적인 시간 및 노력에 대한 동기에 차이가 있는 것으로 밝혀졌다. 예를 들어 경성-순수 분야의 이용자들은 다른 분야의 이용자들에 비해 흥미에 대한 높은 동기를 가지고 있었으며, 연성-순수 분야의 이용자들은 다른 분야 이용자들과 비교하여 개인적/직업적 이익에 대해 높은 동기를 가지고 있었다. 이러한 다양한 학문분야의 연구자들의 동기에 대해 살펴본 연구 결과는 학술 소셜 네트워킹 서비스에서의 연구 데이터와 결과물 공유 활성화를 위한 전략 개발에 도움이 될 것으로 기대한다.
이 연구는 학령기 아동의 발달지원을 위하여 기존의 미술 치료 및 교육에서 시행되어 온 시각적 사고 중심의 접근에 더하여, 언어 교육 및 치료적 접근을 융합하고자 한 것이다. 이에 언어와 미술의 서로 다른 영역의 융합 가능 영역을 탐색하기 위하여 텍스트 마이닝 기법을 적용하였다. 이에 따라 이 연구는 기초 연구, 예비 DB구축, 텍스트 선별, DB 전 처리 및 확정, 불용어 처리, 텍스트 마이닝 분석 및 융합 가능 역 도출'의 절차에 따라 연구를 진행하였다. 연구 결과, 미술 치료 및 교육과 언어 치료 및 교육 분야에서 나타나는 문헌상의 각 군집을 연계하여 의사소통 및 학습 기능, 문제해결 및 감각 기관, 예술 및 지능, 정보와 의사소통, 가정 및 장애, 주제와 개념화 및 또래, 통합과 재구성 및 태도 등과 관련된 융합역을 도출할 수 있었다. 결론적으로 본 연구를 통하여 향후 미술과 언어의 활동 중심 융합형 프로그램을 설계할 수 있는 프레임워크를 마련하고 아동발달 지원을 위한 총체적 접근을 시도하였다는 점에서 연구의 의의가 있다.
공연예술 기관에서의 공연에 대한 흥행 예측은 공연예술 산업 및 기관에서 매우 흥미롭고도 중요한 문제이다. 이를 위해 출연진, 공연장소, 가격 등 정형화된 데이터를 활용한 전통적인 예측방법론, 데이터마이닝 방법론이 제시되어 왔다. 그런데 관객들은 공연안내 포스터에 의하여 관람 의도가 소구되는 경향이 있음에도 불구하고, 포스터 이미지 분석을 통한 흥행 예측은 거의 시도되지 않았다. 그러나 최근 이미지를 통해 판별하는 CNN 계열의 딥러닝 방법이 개발되면서 포스터 분석의 가능성이 열렸다. 이에 본 연구의 목적은 공연 관련 포스터 이미지를 통해 흥행을 예측할 수 있는 딥러닝 방법을 제안하는 것이다. 이를 위해 KOPIS 공연예술 통합전산망에 공개된 포스터 이미지를 학습데이터로 하여 Pure CNN, VGG-16, Inception-v3, ResNet50 등 딥러닝 알고리즘을 통해 예측을 수행하였다. 또한 공연 관련 정형데이터를 활용한 전통적 회귀분석 방법론과의 앙상블을 시도하였다. 그 결과 흥행 예측 정확도 85%를 상회하는 높은 판별 성과를 보였다. 본 연구는 공연예술 분야에서 이미지 정보를 활용하여 흥행을 예측하는 첫 시도이며 본 연구에서 제안한 방법은 연극 외에 영화, 기관 홍보, 기업 제품 광고 등 포스터 기반의 광고를 하는 영역으로도 적용이 가능할 것이다.
본 논문에서는 지방자치단체에 근무하는 사회복지전담공무원의 조직적합성과 직무적합성이 직무열의에 미치는 영향을 살펴보되, 조직몰입의 매개효과를 함께 살펴보고자 하였다. 사회복지전담공무원의 경우에는 격무로 인한 스트레스와 심적 좌절감 등이 문제가 되고 있어 이들의 직무열의에 영향을 주는 요인을 확인하고자 한 것으로, 경기북부지역의 P시와 U시의 사회복지직 공무원 172명을 대상으로 설문조사를 실시하였고 중다귀회귀분석 방법을 활용하여 분석하였다. 연구결과 사회복지전담공무원의 직무열의에는 개인-직무적합성이 긍정적인 영향을 미치고 있는 것으로 나타났으며 조직몰입의 매개효과도 부분매개를 하는 것으로 조사되었다. 그러나 개인-조직적합성은 직무열의에 직접적인 영향은 나타나지 않으나 조직몰입을 통한 완전매개효과는 있는 것으로 나타났다. 이러한 연구결과 사회복지전담공무원들은 개인 차원의 능력이나 목적, 요구 등이 직무와 부합하고 있고 직무열의를 보이고 있는 반면, 조직 차원의 조직적합성에서는 조직 가치나 구조 등에 있어서 일치정도가 나타나지 않아 조직 내에서의 일치성과 친화력이 부족한 것으로 평가된다. 따라서 사회복지전담공무원의 직무열의를 제고하기 위해서는 조직 차원에서의 지원과 일체감 조성이 필요할 것으로 보인다.
안드로이드 저자 식별 연구는 좁은 범위에서는 출처를 밝히기 위한 방법으로 해석할 수 있으나, 넓은 범위에서 본다면 알려진 저작물을 통해 유사한 저작물을 식별하는 통찰력을 얻기 위한 방법으로 해석할 수 있다. 안드로이드 저자 식별 연구에서 발견되는 문제점은 안드로이드 시스템 상 중요한 코드이지만 의미가 없는 코드들로 인하여 저자의 중요한 특징을 찾기 어렵다는 것이다. 이로 인해 합법적인 코드 또는 행동들이 악성코드로 잘못 정의되기도 한다. 이를 해결하기 위하여 서바이벌 네트워크 개념을 도입하여 여러 안드로이드 앱에서 발견되는 특징들을 제거하고 저자별로 정의되는 고유한 특징들을 생존시킴으로써 문제를 해결하고자 하였다. 제안하는 프레임워크와 선행된 연구를 비교하는 실험을 진행하였으며, 440개의 저자가 식별된 앱을 대상으로 실험한 결과에서 최대 92.10%의 분류 정확도를 도출하였고 선행된 연구와 최대 3.47%의 차이를 보였다. 이는 적은 양의 학습데이터를 이용하였으나 저자별 중복된 특징 없이 고유한 특징들을 이용하였기에 선행 연구와 차이가 나타났을 것으로 해석하였다. 또한 특징 정의 방법에 따른 선행 연구와의 비교 실험에서도 적은 수의 특징으로 동일한 정확도를 보일 수 있으며, 이는 서바이벌 네트워크 개념을 통한 지속적으로 중복된 의미 없는 특징을 관리할 수 있음을 알 수 있었다.
합성곱 신경망 모형에서 높은 정확도를 얻기 위해서는 최적의 하이퍼파라미터를 설정하는 작업이 필요하다. 하지만 높은 성능을 낼 수 있는 하이퍼파라미터 값이 정확히 알려진 바가 없으며, 자료마다 최적의 하이퍼파라미터 값이 달라질 수 있기 때문에 매번 실험을 통해서 찾아야만 한다. 또한, 하이퍼파라미터 값들의 범위가 넓고 조합 수가 많기 때문에 시간과 계산량을 줄이기 위해서는 최적값을 찾기 위한 실험 계획을 먼저 한 후에 탐색을 하는 것이 필요하다. 그러나 아직까지 합성곱 신경망 모형에서 하이퍼파라미터 최적화를 위하여 실험계획법을 이용한 연구 결과가 보고되지 않았다. 본 논문에서는 이미지 분류 문제에서 통계방법 중 하나인 실험계획법의 요인배치법을 이용하여 실험 계획을 하고 합성곱 신경망 분석을 한 후에, 높은 성능을 갖는 값을 중심으로 그리드 탐색을 하여 최적의 하이퍼파라미터를 찾는 방법을 제안한다. 실험 계획을 통하여 각 하이퍼파라미터들의 탐색 범위를 줄인 후에 그리드 탐색을 함으로써 효율적으로 연산량을 줄이고 정확도를 높힐 수 있음을 보였다. 또한 실험 결과에서 모형 성능에 가장 큰 영향을 주는 하이퍼파라미터가 학습률이라는 것을 확인할 수 있었다.
디지털 정보기술과 인문학적 연구 문제의 결합을 통해 새롭고 혁신적인 지식을 창출하는 디지털인문학은 대표적인 다학제적 융합 학문 분야라고 볼 수 있다. 이러한 디지털인문학 분야의 지적구조를 규명하기 Digital Humanities 학술대회 최근 2년간(2019, 2020)의 논문 441건을 대상으로 저자사항과 키워드 동시출현 네트워크 분석을 수행하였다. 저자와 키워드 분석 결과를 살펴보면, 유럽, 북미 지역, 동아시권의 일본 중국의 저자의 활발한 활동을 찾아볼 수 있다. 공저자 네트워크를 통해서는 11개의 분절된 네트워크를 확인할 수 있으며, 이는 폐쇄적인 공저활동의 결과로 볼 수 있다. 키워드 분석을 통해서는 16개의 세부 주제 영역을 규명할 수 있으며, 이는 기계학습, 교육학, 메타데이터, 토픽모델링, 문체, 문화유산, 네트워크, 디지털아카이브, 자연언어처리, 디지털도서관, 트위터, 드라마, 빅데이터, 신경망 네트워크, 가상현실, 윤리으로 구성된다. 이러한 군집 구성은 디지털 정보기술이 주된 세부 주제 영역으로 자리매김하고 있음을 알 수 있다. 또한 출현빈도가 높은 키워드들은 인문학 기반 키워드, 디지털 정보기술 기반 키워드, 융합 키워드으로 구분될 수 있으며, 디지털인문학의 성장과 발전 과정의 역동성을 찾아볼 수 있다.
본 논문은 응급의료 환경에서 음성인식 성능을 향상시키기 위하여 실제 환경에서 데이터 수집 방법을 정의하고 정의된 환경에서 수집된 데이터를 전사하는 방법을 제안한다. 그리고 제안된 방법으로 수집되고 전사된 데이터를 이용하여 기본 음성인식 실험을 진행함으로써 제안한 수집 및 전사 방법을 평가하고 향후 연구 방향을 제시하고자 한다. 모든 음성은 기본적으로 16비트 해상도와 16 kHz 샘플링으로 저장되었다. 수집된 데이터는 총 166건의 대화로서 8시간 35분의 분량이다. 수집된 데이터는 Praat를 이용하여 철자 전사, 음소 전사, 방언 전사, 잡음 전사, 그리고 의료 코드 전사를 수행하여 다양한 정보를 포함한 텍스트 데이터를 구축하였다. 이와 같이 수집된 데이터를 이용하여 기본 베이스라인 실험을 통하여 응급의료 영역에서의 음성인식 문제를 실제로 확인할 수 있었다. 본 논문에서 제시한 데이터는 응급의료 영역의 1단계 데이터로서 향후 의료 영역에서의 음성인식 모델의 학습 데이터로 활용되고, 나아가 이 분야의 음성기반 시스템 개발에 기여할 수 있을 것으로 기대된다.
반려동물은 인간에게 신체적, 정신적, 사회적으로 유익한 효과를 주고 있어 코로나19(COVID-19)시대를 살아가는 우리에게 큰 위안을 준다. 또한 지금은 4차 산업혁명의 정보통신기술의 융합 시대이기도 하다. 초고령사회를 눈앞에 둔 우리나라는 OECD 국가 중 1위인 자살률은 정서적인 안정에 효과적인 반려동물이 답이 될 수 있다. 본 연구는 65세 이상의 노인들이 20% 이상 되는 초고령사회를 눈앞에 둔 대한민국이 해결해야 할 문제 중 하나인 노인의 정서적 안정에 효과가 큰 반려동물에 관한 연구이다. 반려동물에 대한 양육 지식이 양육 만족도에 미치는 영향을 관리수준과 전염병인식을 통하여 조사하였다. 반려동물의 관리수준은 반려동물의 양육만족도에 매우 유의깊게 (p<0.001) 영향을 미쳤지만, 전염병인식은 통계적인 의미가 없었다 (p>0.05). 반려동물의 양육 지식을 갖고 양육을 하면 양육 만족도는 높아지고, 보다 행복한 삶을 누릴 수 있다. 반려동물에 대한 양육지식은 개인적인 학습도 중요하지만 정책적인 배려로 교육기관을 통한 교육을 뒷받침하는 것 또한 필요할 것으로 사료된다.
본 연구는 간호대학생들을 대상으로 간호윤리 교과목 적용 후 간호윤리 교과목의 학습 성과인 간호실무 표준과 법적, 윤리적 기준의 이해와 적용을 평가하기 위해서 윤리적 가치관, 간호전문직관 및 생명의료윤리의식을 파악하고자 실시되었다. 자료수집기간은 2017년 12월 2일부터 12월 31일까지이며 2개 대학의 간호대학생 186명을 대상으로 하였다. 자료분석은 SPSS 21.0 프로그램을 이용하여 t-tests, one-way ANOVA, Pearson's correlation coefficient로 분석하였다. 윤리적 가치관의 평균 평점은 3.08±0.33점으로 나타났고, 간호전문직관에 대한 평균 평점은 3.22±0.84점, 생명의료윤리의식의 평균 평점은 2.86±0.22점으로 나타났다. 대상자의 윤리적 가치관, 간호전문직관 및 생명의료윤리의식영역 간의 상관관계에서 간호전문직관과 윤리적 가치관(r=.489, p<.001)은 통계적으로 유의한 양의 상관관계가 있는 것으로 나타났다. 결론적으로 간호대학생에게 생명의료 윤리의식을 높이고 직면하는 간호문제를 민감하게 인식하고 판단력 있는 윤리적 행위를 하기 위한 교육 프로그램의 적용이 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.