• Title/Summary/Keyword: 학생의 수학학습 기회

Search Result 114, Processing Time 0.027 seconds

Exploring How Middle-School Mathematics Textbooks on Functions Provide Students an Opportunity-To-Learn (중학교 수학교과서가 학생에게 제공하는 함수 학습기회 탐색)

  • Kim, Gooyeon;Jeon, MiHyun
    • School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.289-317
    • /
    • 2017
  • This study aims to explore how Korean middle-school mathematics textbooks on functions provide students an opportunity-to-learn [OTL]. For this purpose, we investigate 3 textbooks in terms of mathematics content and practice, the level of cognitive demands of mathematical tasks, types of student responses, types of context-based tasks, and connections among the tasks. The findings from the data analysis suggest as follows: a) an opportunity-to-learn to connect procedures to functional concepts and new ideas of functions to the existing one is very limited; b) the textbooks seem to provide students an OTL to understand functions as definitions, rules and conventions and to experience repeatedly procedural executions through worked examples and mathematics tasks; c) students may not experience to explain their own ideas/thinking by using mathematical sentence or justify their own cognitive processes; and d) students can be exposed to get a sense of mathematics as a set of fragmented and isolated facts or procedures, rather than to encourage to expand and deepen their understanding of functions.

How do Korean Elementary Textbooks Pace Students' Learning to Learning Trajectories? : Focus on Area and Volume (초등학교 수학교과서 속 과제의 학습 경로 분석: 넓이와 부피를 중심으로)

  • Ko, Eun-Sung;Lee, Eun Jung;Hwang, Jihyun
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.2
    • /
    • pp.207-225
    • /
    • 2017
  • With a significant role of textbooks in shaping students' opportunities to learn, textbook analysis is essential to reveal these opportunities to learn the concept of area and volume. This research aims to show how the Korean textbooks pace students' learning of area and volume across grades by scrutinizing the textbooks with students' developmental sequences, called learning trajectories. Tasks about area and volume in all Korean elementary textbooks (grade 1 to 6) are coded with the specific developmental stages suggested in learning trajectories. As a result, we find considerable misalignment between the textbooks and the learning trajectories. The textbooks provide opportunities to experience developmental progressions of area and volume later than ages suggested in the learning trajectories. In addition, learning opportunities are significantly concentrated in grade 5 for area and grade 6 for volume with heavy emphases on applying formulas of area or volume. The findings from this research provides important implications concerning design of textbooks as well as improving students' opportunities in the mathematics classrooms.

초등학교에서의 알고리즘 지도의 필요성과 지도방법

  • Seo, Chan-Suk;Nam, Seung-In
    • Communications of Mathematical Education
    • /
    • v.11
    • /
    • pp.145-157
    • /
    • 2001
  • 학습자가 수학적 지식이 정말로 가치 있고 유용한 것이라는 실감을 갖게 하기 위해서는 학습자가 학습의 주체로써 능동적인 참여 기회와 환경의 제공해야 할 것이다. 그러나 지금까지의 수학 학습은 주로 교과서에 제시된 내용과 순서에만 의존하여 교사가 자신의 관점에 근거하여 학생들을 가르치기 위해 수업을 설계하고 실행하고 평가함으로 해서 이미 만들어진 수학을 전수 받아 이를 암기하고 반복 연습하는 경우가 많았다. 특히 수학학습에서 가장 기본 ${\cdot}$ 기초가 되는 알고리즘 학습의 경우 학생들이 가지고 있는 기존의 경험이나 지식에 근거하여 그들 스스로 알고리즘을 구안 ${\cdot}$ 적용해 볼 수 있는 기회를 통해 문제를 해결하는 경험이 중요하다고 보겠다. 이런 맥락에서 본고에서는 인간의 창조적 활동의 산물인 표준화된 알고리즘을 직접적으로 도입 ${\cdot}$ 적용하기에 앞서서 학습자의 수준에서 창의적으로 알고리즘을 고안 ${\cdot}$ 활용해 볼 수 있도록 하기 위해 초등학교 수학에서 알고리즘을 지도하는 방안에 대해 알아보고자 한다

  • PDF

A Study on Teacher's Pre-Noticing and Actual Noticing in Mathematics Classroom (교사의 사전 주목하기와 수학수업에서 실제 주목하기에 대한 연구)

  • Lee, Eun Jung;Lee, Kyeong-Hwa
    • School Mathematics
    • /
    • v.18 no.4
    • /
    • pp.773-791
    • /
    • 2016
  • Teacher noticing ability has been considered as one of important elements influencing a quality of teaching. Noticing is closely related to teachers' in the moment decision making in a class, and teachers notice things as they create and interact with their classroom setting. Mathematics teachers as an expert should notice students' mathematics learning during a class. The aim of this study was to analyze how mathematics teacher's pre-noticing activity that the teacher anticipated students' typical strategies and difficulties in learning targeted mathematics knowledge and prepared appropriate responses worked in practice. As a result, the teacher conducted three types of noticing in her classes: noticing shaping students' understanding by using students' misconceptions or errors; noticing creating students' learning opportunities based on their prior knowledge; noticing improving students' informal reasoning. This study concluded with discussion about the positive effect of teacher's pre-noticing activity on her actual noticing in practice, as well as implications for teacher education.

Analysis of Students' Cognition for Enrichment Mathematics Textbook Tasks' Levels of Cognitive Demand (심화수학 교과서 과제의 인지적 노력수준에 대한 학생 인식 분석)

  • Jung, Hye Yu;Lee, Kyeong-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.4
    • /
    • pp.615-637
    • /
    • 2017
  • The purpose of this study is to analyze the actual realization of the opportunity to learn given to students by examining students' cognition for enrichment mathematics textbook tasks' levels of cognitive demand. First, we analyze characteristics and limitations based on the theoretical framework. Second, we examine students' cognition about the distribution of the mathematics textbook tasks' levels of cognitive demand. And we analyze how the opportunity to learn actually work. Third, in the sense that enrichment textbooks are textbooks for science school students, we analyze whether the opportunity to learn for gifted is offered. The conclusion is as follows: First, with respect to levels of cognitive demand, PNC tasks account most. Second, students also cognize that PNC tasks account most. Third, tasks for gifted are not offered and students also cognize that opportunity to learn for gifted is lacked.

The Effects of Mathematics Learning Mentoring on Mathematical Knowledge for Teaching of Pre-service Mathematics Teachers (수학학습 멘토링이 예비수학교사의 수학교수지식(MKT)에 미치는 영향)

  • Lee, Heonsoo;Kim, Sol;Kang, Sungmo
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.4
    • /
    • pp.327-348
    • /
    • 2021
  • This study examines the effects of mathematics learning mentoring activities on mathematical knowledge for teaching (MKT) of pre-service mathematics teachers. We choose six pre-service mathematics teachers in the department of mathematics education at M University. The pre-service mathematics teachers conducted 1:1 mathematics learning mentoring for two hours at a times and twice a week for 15 weeks. The pre-service mathematics teachers submitted the mentor log, which recorded weekly learning and emotional observations. We collected the mentor log and the reflection log of pre-service mathematics teachers and the interviews with pre-service mathematics teachers. Based on the collected data, we analyzed the effects of MKT, the understanding of students, and pre-service mathematics teachers' introspection by mathematics learning mentoring. We obtained conclusions as follows. First, mathematics learning mentoring provides an opportunity for pre-service mathematics teachers to apply the theory of mathematical education to schools. Thus pre-service mathematics teachers express theoretical knowledge as practical knowledge. Second, mathematics learning mentoring helps pre-service mathematics teachers have the ability to understand students and provide opportunities to reflect on their attitudes as learners. Third, mathematics learning mentoring helps advance teaching activities by providing pre-service mathematics teachers with opportunities to reflect on their teaching activities. Finally, mathematics learning mentoring has positively influenced the change in pre-service mathematics teachers' beliefs and teaching intuition.

A study of students' perceptions of mathematics learning situations (수학 학습 상황에 대한 학생들의 인식에 관한 연구)

  • Somin Kim;Boeuk Suh;Ho Kyoung Ko;Nan Huh
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.411-436
    • /
    • 2024
  • This study investigated how Korean elementary, middle, and high school students perceive mathematics learning situations to determine whether the mathematics classes provided in schools met the standards of a highquality educational experience. Using a comprehensive survey that considers both formal and implementation aspects of mathematics classes, responses from 15,418 students were analyzed to gain insights into their views on the classroom environment, instructional methods, and overall learning experience. The results indicate that as students advance in grade level, their perceptions of mathematics learning situations become increasingly negative, and mathematics classes are still perceived as being teacher-centered. Additionally, it was found that mathematical manipulatives and technological tools are not being effectively utilized, and that students' learning experiences are influenced by class size and the availability of mathematics subject-exclusive classrooms. Based on these findings, several recommendations were made to improve the quality of mathematics education and enhance students' perceptions: implementing teaching methods that increase student engagement in learnercentered classes, providing opportunities for active and diverse use of teaching aids and technological tools beyond simple calculations, maintaining appropriate class sizes, and expanding the use of mathematics subject-exclusive classrooms. These considerations are crucial for creating a more engaging and effective mathematics learning environment that aligns with evolving educational standards and meets students' needs. The findings of this study provide actionable insights for educators and policymakers aiming to improve the quality of mathematics education in Korea.

대학수학에서, 글쓰기를 통한 호의적인 태도변화 모색

  • Kim, Byeong-Mu
    • Communications of Mathematical Education
    • /
    • v.12
    • /
    • pp.411-422
    • /
    • 2001
  • 대학수학에서 학생들의 글쓰기를 통해 수학전반에 대한 학습진단, 느낌, 대책, 자기경험등 여러가지를 발표토록하여 바람직한 수학관을 갖고 수학학습태도를 기르도록 도움을 줄 기회를 갖게 하며, 수학이 중요하고 필요함을 깨우쳐 수학이 그들 인생의 동반자가 되도록 한다.

  • PDF

수학 개념의 자기 주도적 구성을 위한 교수 ${\cdot}$ 학습 모델 개발 - Cabri Geometry II와 MathView 활용을 중심으로 -

  • Park, Yong-Beom;Kim, Han-Hui;Park, Il-Yeong
    • Communications of Mathematical Education
    • /
    • v.9
    • /
    • pp.97-114
    • /
    • 1999
  • 새로운 세기의 수학 교육은 직관과 조작 활동에 바탕을 둔 경험에서 수학적 형식, 관계, 개념, 원리 및 법칙 등을 이해하도록 지도되어야 한다. 즉 학생들의 내면 세계에서 적절한 경험을 통하여 시각적 ${\cdot}$ 직관적으로 수학적 개념을 재구성할 수 있도록 상황과 대상을 제공해야 한다. 이를 위하여 컴퓨터 응용 프로그램을 활용한 자기주도적 수학 개념 형성에 적합한 교수 ${\cdot}$ 학습 모델을 구안하여 보았다. 이는 수학의 필요성과 실용성 인식 및 자기주도적 문제해결력 향상을 위한 상호작용적 매체의 활용이 요구된다. 본 연구는 구성주의적 수학 교수 ${\cdot}$ 학습 이론을 근간으로 대수 ${\cdot}$ 해석 ${\cdot}$ 기하 및 스프레트시트의 상호 연계를 통하여 수학 지식을 재구성할 수 있도록 학습수행지를 제작하여 교사와 학생의 다원적 상호 학습 기회를 제공하는 데 주안점을 두고자 한다.

  • PDF

미국 NCTM의 Principles and Standards for School Mathematics에 나타난 수학과 교수 ${\cdot}$ 학습의 이론

  • Choe, Yeong-Han;Kim, Mi-Wol
    • Communications of Mathematical Education
    • /
    • v.13 no.2
    • /
    • pp.751-764
    • /
    • 2002
  • 미국의 “전국 수학 교사 협의회” (National Council of Teachers of Mathematics, NCTM)는 1989년부터<학교 수학의 교육과정과 평가 규준> (1989), <수학 가르침(교수)의 전문성 규준> (1991), <학교 수학의 평가(시험) 규준> (NCTM, 1995), <학교 수학의 원리와 규준> (2000)을 출판하여 미국의 수학 교육의 전망(목표, 나아갈 길)과 규준(실행 지침)을 제시하였다. 수학 교사들로 구성된 미국의 NCTM은 학생, 학부모, 학교 행정가 등 많은 사람들과 힘을 합하여 모든 학생들에게 수준 높은 수학 교육을 받을 수 있는 여건(환경, 기회)을 조성하는 데 구심점의 역할을 하였다. 한편 많은 관련 단체들은 여러 배경과 능력을 가진 학생들이 전문성을 지닌 교사(특수 교사를 일컫는 말이 아니다. 수학 교과를 이해하고 수학의 전문성과 특수성을 가르칠 수 있는 일반 교사를 일컫는 말이다.)로부터 미래를 대비해 평등하고, 진취적이며, 지원이 잘 이루어지고, 공학 도구(IT)가 잘 갖춰진 환경에서 중요한 수학적 아이디어를 이해하면서 학습할 수 있는 수학 교실(미국에서는 우리나라처럼 수학 교사가 수학 시간에 학생의 방(교실: Homeroom)에 찾아가지 않고 학생들이 선생의 방(수학 교실: Classroom)을 찾아온다. 전형적인 수학 교실의 사진은 2쪽에 나와 있다.)을 만들기 위해 함께 힘썼다. NCTM에서 출간한 여러 규준들은 우리나라의 제 6 차와 제 7 차 교육과정에도 큰 영향을 미쳤다. 이 글에서는 NCTM (2000)에서 제시한 학습 원리를 간단히 살펴본 다음 이를 중심으로 현재 미국 수학교육의 교수 ${\cdot}$ 학습 이론의 동향을 살펴본다.

  • PDF