• Title/Summary/Keyword: 하중-처짐 관계

Search Result 78, Processing Time 0.03 seconds

Flexural Failure Behaviour of RC Beams Strengthened by CFS according to Loading Condition (CFS로 보강된 RC보의 가력상태에 따른 휨파괴 거동)

  • Park, Sung-Soo;Cho, Su-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • The purpose of this research are to investigate experimentally flexural strengthening effects and flexural behaviour of RC beams strengthened by carbon fiber sheet(CFS) with/without superimposed pre-load. Test parameters of experiment are tension reinforcement ratio(0.85, 1.32, 1.91%) and pre-load(80% of yield capacity of unstrengthened beams). The structural behaviour of strengthened beams are compared with in terms of yield load and ultimate load, load-deflection relation, ductility, strengthened efficiency. From the test results, it were shown that ultimate capacity and flexural failure behaviour of RC beams strengthened by CFS changed by initial stresses between original beams and bonded CFS.

A Study on Buckling Behavior of Shallow Circular Arches (낮은 원호아치의 좌굴거동에 대한 연구)

  • 김연태;허택녕;오순택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.87-94
    • /
    • 1998
  • Behavioral characteristics of shallow circular arches with dynamic loading and different end conditions are analysed. Geometric nonlinearity is modelled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion, and the Newmark method is adopted in the approximation of time integration. The behavior of arches is analysed using the buckling criterion and non-dimensional time, load and shape parameters which Humphreys suggested. But a new deflection-ratio formula including the effect of horizontal displacement plus vertical displacement is presented to apply for the non-symmetric buckling problems. Through the model analysis, it's confirmed that fix-ended arches have higher buckling stability than hinge-ended arches, and arches with the same shape parameter have the same deflection ratio at the same time parameter when loaded with the same parametric load.

  • PDF

An Experimental Study on the Fatigue Behaviors Strengthened by Ventilation-Glass Fiber Plate of Reinforced Concrete Beams (철근콘크리트 보의 통기성 유리섬유판 보강에 따른 피로거동에 관한 실험적 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Chunsik
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2012
  • Recently, the construction industry commonly uses FRP as a reinforcement material because of its material advantages. FRP attached reinforcement has various advantages such as high strength, stiffness, excellent durability and construction practicability comparing to its weight. However, external attachment of FRP is water-tighted with low water permeable material, not draining water, probably causing damages on a permanent structure. The study manufactured it through pultrusion and examined GP(glass fiber panel) of which material-mechanical properties are almost same as the existing FRP but durability and attachment performance are better by stationary experiments, testing load-deflection curve, destruction types and load-deflection relation under repetitive loading test. As a result of 2,000,000 fatigue tests, it did not result in the destruction and showed excellent permanent attachment and durability as it displays significantly low compressive strain of concrete.

Improved Static Element Stiffness Matrix of Thin-Walled Beam-Column Elements (박벽보-기둥 요소의 개선된 정적 요소강성행렬)

  • Yun, Hee Taek;Kim, Nam Il;Kim, Moon Young;Gil, Heung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • In order to perform the spatial buckling and static analysis of the nonsymmetric thin-walled beam-column element, improved exact static stiffness matrices were evaluated using equilibrium equation and force-deformation relationships. This numerical technique was obtained using a generalized linear eigenvalue problem, by introducing 14 displacement parameters and system of linear algebraic equations with complex matrices. Unlike the evaluation of dynamic stiffness matrices, some zero eigenvalues were included. Thus, displacement parameters related to these zero eigenvalues were assumed as polynomials, with their exact distributions determined using the identity condition. The exact displacement functions corresponding to three loadingcases for initial stress-resultants were then derived, by consistently combining zero and nonzero eigenvalues and corresponding eigenvectors. Finally, exact static stiffness matrices were determined by applying member force-displacement relationships to these displacement functions. The buckling loads and displacement of thin-walled beam were evaluated and compared with analytic solutions and results using ABAQUS' shell element or straight beam element.

Investigation of the Electromechanical Response of Smart Ultra-high Performance Fiber Reinforced Concretes Under Flexural (휨하중을 받는 스마트 초고강도 섬유보강 콘크리트의 전기역학적 거동 조사)

  • Kim, Tae-Uk;Kim, Min-Kyoung;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2022
  • This study investigated the electromechanical response of smart ultra-high performance fiber reinforced concretes (S-UHPFRCs) under flexural loading to evaluate the self-sensing capacity of S-UHPFRCs in both tension and compression region. The electrical resistivity of S-UHPFRCs under flexural continuously changed even after first cracking due to the deflection-hardening behavior of S-UHPFRCs with the appearance of multiple microcracks. As the equivalent bending stress increased, the electrical resistivity of S-UHPFRCs decreased from 976.57 to 514.05 kΩ(47.0%) as the equivalent bending stress increased in compression region, and that did from 979.61 to 682.28 kΩ(30.4%) in tension region. The stress sensitivity coefficient of S-UHPFRCs in compression and tension region was 1.709 and 1.098 %/MPa, respectively. And, the deflection sensitivity coefficient of S-UHPFRCs in compression region(30.06 %/mm) was higher than that in tension region(19.72 %/mm). The initial deflection sensing capacity of S-UHPFRCs was almost 50% of each deflection sensitivity coefficient, and it was confirmed that it has an excellent sensing capacity for the initial deflection. Although both stress- and deflection-sensing capacity of S-UHPFRCs under flexural were higher in compression region than in tension region, S-UHPFRCs are sufficient as a self-sensing material to be applied to the construction field.

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams (철근(鐵筋)콘크리트보의 전단피로거동(剪斷疲勞擧動)에 관(關)한 연구(硏究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.173-185
    • /
    • 1988
  • This study is intended to investigate the shear fatigue behaviour of reinforced concrete beams based on a series of experiments, and verify the test results in comparison with the analysis result obtained by using a nonlinear finite element method. The experiments are divided into the tests under the static loading and the test under the dynamic fatigue loading. In order to investigate the shear failure behaviour under static loadings, four specimens for three different cases were made and tested. The behaviour of stirrups with the static stress and strain variations were observed based on the results of these tests. In the fatigue fracture tests, eleven specimens for four different cases were made and tested. Various observations on mid-span deflection of test beams and tensile strains of reinforcing steels as well as stirrups were made against various fatigue loadings. It may be concluded that the shear fatigue strengths of R.C. specimens at one million cycles turn out to be approximately 65 percent of the static ultimate shear strength.

  • PDF

Development of Reinforced Wood Beams Using Polymer Mortar (폴리모 모르터를 이용한 강화목재보의 개발)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.79-86
    • /
    • 1990
  • Based on limited number of tests on reinforced wood beams using polymer mortar in this study, following conclusions were drawn ; 1.Reinforcing compression side of wood beam using polymer mortar was effective in reducing deflection. 2.By increasing thickness of polymer mortar, effective beam stiffness was improved, but energy absorption was reduced. 3.Polymer mortar reinforcement improved compressive strength and reduced strain in compression side of the beam. Therefore, it was possible to change the failure mode from by compression in control beam to by tension in composite beams. 4.The composite beams that have more than 2cm of polymer mortar layer did not perform well because a strain redistribution and separation of meterials at interface were induced in moment span. 5.To maximize the load carrying capacity of composite beam, it is necessary to make polymer mortar and wood behave together without failing at interface. To do this, it is needed to use a polymer mortar which has high strength with such elastic modulus that is closer to elastic modulus of wood. otherwise, it is recommended to use shear connectors at interface to prevent separation of materials under ultimate load.

  • PDF

Estimation of Tensile Strength Using Reverse Analysis Method for Ultra High Performance Concrete (역해석 기법을 이용한 초고성능콘크리트의 인장강도 추정)

  • Lee, Chang-Hong;Kim, Young-Jin;Chin, Won-Jong;Kim, Hee-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.163-164
    • /
    • 2010
  • Ultra high performance concrete (UHPC) is a relatively new cementitous material, which has been developed to give significantly higher material performance than conventional concrete or engineered cementitious composites. In this study, reverse analysis of notched UHPC beam was conducted according to the experimental result of load-displacement. Conclusively, tensile strength vs. CMOD (Crack Mouth Opening Displacement) was calculated as an approximated method for the direct tensile strength estimation.

  • PDF

The Flexural and Shear Behaviors of Steel-PSC Mixed Structural System with Front-Rear Plate Connection (전·후면판 공용방식 접합부를 갖는 강-PSC 혼합구조의 휨 및 전단거동)

  • Lho, Byeong-Cheol;Cho, Sung-Yong;Park, Hyun-Chul;Kim, Mun-Kyum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.201-212
    • /
    • 2007
  • This study presents experimental results of Steel-PSC mixed structural system having front-rear plate connection between Steel and Prestressed Concrete. Two kinds of Steel-PSC mixed structural system of 5.4m length were tested to evaluate flexural behaviors under four point loading, and 4 kinds of specimens with and without prestressing force at R & L type connection were tested to observe the shear behavior. Based on the test results of load-deflection curves and failure modes of specimens, it is found that the proposed L shape connection with front-rear plate connection between Steel and Prestressed Concrete has higher strength and stiffness. From the study, Steel-PSC mixed structural system with L shaped connection has a better structural performance in connection part.

An Experimental Study for Performance of PSC-I Girders with 60MPa High-Strength Concrete (설계강도 60MPa급 고강도 PSC의 내하성능 검토)

  • Lee, Jae-Yong;Min, Kyung-Hwan;Yang, Jun-Mo;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.9-12
    • /
    • 2008
  • PSC-I girder is widely used in designing bridge. Currently partial advanced country have constructed bridge with high strength concrete, while in-country rather less concrete strength(40MPa) has been used to build bridge girder. So, this paper presents characteristics and behavior of member casted by high strength concrete to apply practically. For this aim, 4 girders were fabricated to investigate performance and structural behavior. Prior to test, structural analysis was performed with common program. Steel gages and concrete gage were filled up to measure longitudinal and vertical strain of reinforcement and concrete. Linear Variable Differential Transducer and concrete surface gage were also set to measure deflection and strain of concrete. Load-deflection relation and crack mode were analyzed at transfer and test and compared with the structural analysis

  • PDF