Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2022-00142566).
References
- An, Y. K., and Jang, K. Y. (2017), Hybrid image scanning-based concrete crack evaluation technique. Magazine of the Korea Concrete Institute, Korea Concrete Institute, 29(6), 36-41.
- Kim, H. J., Ahn, E. J., Cho, S. J., Shin, M. S., Sim, S. H. (2017) Comparative analysis of image binarization methods for crack identification in concrete structures. Cement and Concrete Research, Elsevier Ltd., 99, 53-61. https://doi.org/10.1016/j.cemconres.2017.04.018
- Choi, Y. S., Kim, J. H., Cho, H. C., Lee, C. J. (2019) Asphalt concrete pavement surface crack detection using convolutional neural network. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(6), 38-44. https://doi.org/10.11112/JKSMI.2019.23.6.38
- Wan, K. T., and Leung, C. K. Y. (2007) Applications of a distributed fiber optic crack sensor for concrete structures, Sensors and Actuators, A: Physical, Elsevier Ltd., 135, 458-464. https://doi.org/10.1016/j.sna.2006.09.004
- Wolf, J., Pirskawetz, S., Zang, A. (2015) Detection of crack propagation in concrete with embedded ultrasonic sensors. Engineering Fracture Mechanics, Elsevier Ltd., 146, 161-171. https://doi.org/10.1016/j.engfracmech.2015.07.058
- Kim, J. H., Hong, J. Y., Kim, R. R., Woo, U. W., Choi, H. J. (2020) Development and application of IoT-based contactless ultraosonic system. Journal of the Korea Institute for Structural Maintenance and Inspection, 24(3), 70-79. https://doi.org/10.11112/JKSMI.2020.24.3.70
- Ahn, E. J., Kim, H. J., Sim, S. H., Shin, S. W., Shin, M. S. (2017) Principles and applications of ultrasonic-based nondestructive methods for self-healing in cementitious materials. Materials, MDPI, 10, 21-25. https://doi.org/10.3390/ma10010021
- Kim, M. K., Kim, D. J., An, Y.K. (2018) Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension. Composites Part B: Engineering, Elsevier Ltd., 134, 254-264. https://doi.org/10.1016/j.compositesb.2017.09.061
- Lee, S. H., Kim, S. H., Yoo, D. Y. (2018) Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete. Construction and Building Materials, Elsevier Ltd., 185, 530-544. https://doi.org/10.1016/j.conbuildmat.2018.07.071
- Le, H. V., Kim, M. K., Kim, S. U., Chung, S. Y., Kim, D. J. (2021) Enhancing self-stress sensing ability of smart ultra-high performance concretes under compression by using nano functional fillers. Journal of Building Engineering, Elsevier Ltd., 44, 102717. https://doi.org/10.1016/j.jobe.2021.102717
- Kang, M. S., Kang, M. S., Lee, H. J., Yim, H. J., An, Y. K. (2018) Crack initiation and temperature variation effects on self-sensing impedance responses of FRCCs. Journal of the Korea Institute for Structural Maintenance and Inspection, 22(3), 69-74. https://doi.org/10.11112/JKSMI.2018.22.3.069
- Bae, Y. H., Pyo, S. H. (2020) Effect of steel fiber content on structural and electrical properties of ultra high performance concrete (UHPC) sleepers. Engineering Structures, 222, 111131. https://doi.org/10.1016/j.engstruct.2020.111131
- Le, H. V., Kim, T. U., Khan, S., Park, J. Y., Park, J. W., Kim, S. E., Jang, Y., Kim, D. J. (2021) Development of low-cost wireless sensing system for smart ultra-high performance concrete. Sensors, MDPI, 21, 6386. https://doi.org/10.3390/s21196386
- Yuan, T. F., Choi, J. S., Kim, S. K., Yoon, Y. S. (2021) Assessment of steel slag and steel fiber to control electromagnetic shielding in high-strength concrete. KSCE Journal of Civil Engineering, 25(3), 920-930. https://doi.org/10.1007/s12205-021-0629-1
- Kim, D. J., El-Tawil, S., Naaman, A. E. (2010) Effect of matrix strength on pull-out behavior of high strength deformed steel fibers. American Concrete Institute Special Publication, ACI., 272, 135-150.
- Le, H. V., Lee, D. H., Kim, D. J. (2020) Effects of steel slag aggregate size and content on piezoresistiveresponses of smart ultra-high-performance fiber-reinforced concretes. Sensors and Actuators A: Physical, Elsevier Ltd., 305, 111925. https://doi.org/10.1016/j.sna.2020.111925
- Lee, S. Y., Le, H. V., Kim, D. J. (2019) Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress. Construction and Building Materials, Elsevier, 220, 149-160. https://doi.org/10.1016/j.conbuildmat.2019.05.197
- Lee, S. Y., Le, H. V., Kim, M. K., Park, J. W., Kim, D. J. (2021) An innovative smart concrete anchorage with self-stress sensing capacity of prestressing stress of PS tendon. Sensors, MDPI, 21, 5251. https://doi.org/10.3390/s21155251
- Kim, T. U., Le, H. V., Park, J. W., Kim, S. E., Jang, Y., Kim, D. J. (2021) Development of a smart concrete block with an eccentric load sensing capacity. Construction and Building Materials, Elsevier Ltd., 306, 124881. https://doi.org/10.1016/j.conbuildmat.2021.124881
- Banthia, N., Djeridane, S., Pigeon, M. (1992) Electrical resistivity of carbon and steel micro-fiber reinforced cements, Cement and Concrete Research, 22, 804-814. https://doi.org/10.1016/0008-8846(92)90104-4
- Kim, M. K., Park, J. W., Kim, D. J. (2020) Characterizing the electro-mechanical response of self-sensing steel-fiber-reinforced cementitious composites. Construction and Building Materials, Elsevier Ltd., 240, 117954. https://doi.org/10.1016/j.conbuildmat.2019.117954
- Nguyen, D. L., Kim, D. J., Ryu, G. S., Koh, K. T. (2013) Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete. Composites: Part B Engineering, Elsevier Ltd., 45, 1104-1116. https://doi.org/10.1016/j.compositesb.2012.07.012
- Kim, M. K., Le, H. V., Kim, D. J. (2021) Electromechanical response of smart ultra-high performance concrete under external loads corresponding to different electrical measurements. Sensors, MDPI, 21, 1281. https://doi.org/10.3390/s21041281